This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365200 #27 Sep 25 2023 07:28:46 %S A365200 34,86,94,122,142,194,202,214,218,262,302,314,358,386,394,422,446,562, %T A365200 586,626,634,698,734,838,842,922,982,1042,1138,1234,1262,1306,1346, %U A365200 1366,1402,1522,1642,1646,1658,1754,1762,1774,1838,1874,1894,1906,1942,1982,2026,2098,2102,2182,2186,2218 %N A365200 Even semiprimes that are the exact average of two consecutive odd semiprimes. %e A365200 34 is a term because (33 + 35)/2 = 34 = 2*17 is an even semiprime. %e A365200 86 is a term because (85 + 87)/2 = 86 = 2*43 is an even semiprime. %t A365200 sp=Select[Range[5,2400,2], PrimeOmega[#]==2&]; a={}; For[i=1, i<Length[sp], i++, hav=Sum[Part[sp,k],{k,i,i+1}]/4; If[PrimeQ[hav], AppendTo[a,2hav]]]; a (* _Stefano Spezia_, Aug 25 2023 *) %o A365200 (PARI) upto(n) = {my(res = List(), l = List([0, 9]), s = sum(i = 1, #l, l[i]), i = l[#l]+2, ntimes2 = 2*n); while(1, if(bigomega(i) == 2, s += (i-l[1]); if(s > ntimes2, return(res)); if(s % 4 == 0 && isprime(s/4), listput(res, s/2)); listpop(l, 1); listput(l, i)); i+=2)} \\ _David A. Corneth_, Aug 26 2023 %Y A365200 Cf. A046315, A365201, A365202. %Y A365200 Subset of A100484. %K A365200 nonn %O A365200 1,1 %A A365200 _Elmo R. Oliveira_, Aug 25 2023