cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365202 Even semiprimes that are the exact average of six consecutive odd semiprimes.

This page as a plain text file.
%I A365202 #24 Sep 25 2023 07:29:28
%S A365202 146,194,302,478,482,614,706,1006,1438,1966,1994,2186,2206,2426,2462,
%T A365202 2594,2614,3098,3274,3518,3742,3986,4282,4406,4594,4702,5354,5606,
%U A365202 6038,6178,6218,6238,6442,6626,6782,7262,7642,7646,7886,8254,9098,9194,9298,9346,9442,9574,9938
%N A365202 Even semiprimes that are the exact average of six consecutive odd semiprimes.
%e A365202 146 is a term because (133 + 141 + 143 + 145 + 155 + 159)/6 = 146 = 2*73 is an even semiprime.
%e A365202 302 is a term because (295 + 299 + 301 + 303 + 305 + 309)/6 = 302 = 2*151 is an even semiprime.
%t A365202 sp=Select[Range[5,12000,2], PrimeOmega[#]==2&]; a={}; For[i=1, i<Length[sp]-5, i++, hav=Sum[Part[sp,k],{k,i,i+5}]/12; If[PrimeQ[hav], AppendTo[a,2hav]]]; a (* _Stefano Spezia_, Aug 25 2023 *)
%o A365202 (PARI) upto(n) = {my(res = List(), l = List([0,9,15,21,25,33]), s = sum(i = 1, #l, l[i]), i = l[#l]+2, ntimes6 = 6*n); while(1, if(bigomega(i) == 2, s += (i-l[1]); if(s > ntimes6, return(res)); if(s % 12 == 0 && isprime(s/12), listput(res, s/6)); listpop(l, 1); listput(l, i)); i+=2)} \\ _David A. Corneth_, Aug 26 2023
%Y A365202 Cf. A046315, A365200, A365201.
%Y A365202 Subset of A100484.
%K A365202 nonn
%O A365202 1,1
%A A365202 _Elmo R. Oliveira_, Aug 25 2023