cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365207 The number of divisors d of n such that gcd(d, n/d) is a power of 2 (A000079).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 2, 4, 2, 6, 2, 4, 4, 5, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 2, 6, 2, 8, 2, 6, 4, 4, 4, 6, 2, 4, 4, 8, 2, 8, 2, 6, 4, 4, 2, 10, 2, 4, 4, 6, 2, 4, 4, 8, 4, 4, 2, 12, 2, 4, 4, 7, 4, 8, 2, 6, 4, 8, 2, 8, 2, 4, 4, 6, 4, 8, 2, 10, 2, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

The sum of these divisors is A107749(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, e + 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, f[i,2]+1, 2));}

Formula

Multiplicative with a(2^e) = e+1 and a(p^e) = 2 for an odd prime p.
a(n) <= A000005(n), with equality if and only if n is in A122132 (or equivalently, n is not in A038838).
a(n) >= A034444(n), with equality if and only if n is not divisible by 4 (A042968).
a(n) = A000005(A006519(n)) * A034444(A000265(n)).
a(n) = A034444(n) * (A007814(n)+1)/2^(1 - (n mod 2)).
Dirichlet g.f.: (4^s/(4^s-1)) * zeta(s)^2/zeta(2*s).
Sum_{k==1..n} a(k) ~ (8/Pi^2)*n*(log(n) + 2*gamma - 2*log(2)/3 - 2*zeta'(2)/zeta(2) - 1), where gamma is Euler's constant (A001620).