A365210 The number of divisors d of n such that gcd(d, n/d) is a 5-rough number (A007310).
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 3, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 3, 6, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 6, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[p <= 3 , 2, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] <= 3, 2, f[i,2]+1));}
Formula
Multiplicative with a(p^e) = 2 for p = 2 and 3, and a(p^e) = e+1 for a prime p >= 5.
a(n) <= A000005(n), with equality if and only if n is neither divisible by 4 nor by 9.
a(n) >= A034444(n), with equality if and only if n is not divisible by a square of a prime >= 5.
Dirichlet g.f.: (1-1/4^s) * (1-1/9^s) * zeta(s)^2.
Sum_{k=1..n} a(k) ~ (2*n/3) * (log(n) + 2*gamma - 1 + 2*log(2)/3 + log(3)/4), where gamma is Euler's constant (A001620).
Comments