This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365227 #32 Aug 29 2023 14:29:43 %S A365227 1,3,2,7,11,59,33,737,631,1973,439,4967,3595,7283,289433,891067,82391, %T A365227 647449,2764637,160300109,119168603,1923477,19032303,442903921, %U A365227 278705461,1155909107,84109239017,255355122859,632225777,203232858383,1110186816983,81194050820693 %N A365227 Numerator of Sum_{1<=j<=k<=n, gcd(j,k)=1} 1/(j*k). %p A365227 A365227 := proc(n) %p A365227 local j,k,s; s := 0; %p A365227 for j from 1 to n do %p A365227 for k from j to n do %p A365227 if gcd(j,k) = 1 then s := s + 1/(j*k); %p A365227 end if; %p A365227 end do; %p A365227 end do; %p A365227 numer(s); %p A365227 end proc; %p A365227 seq(A365227(n), n = 1..20); %p A365227 # second Maple program: %p A365227 a:= n-> numer(add(add(`if`(igcd(j, k)=1, 1/j, 0), j=1..k)/k, k=1..n)): %p A365227 seq(a(n), n=1..45); # _Alois P. Heinz_, Aug 28 2023 %o A365227 (Python) %o A365227 from math import gcd %o A365227 from fractions import Fraction %o A365227 def A365227(n): return sum(sum(Fraction(1,j) for j in range(1,k+1) if gcd(j,k)==1)/k for k in range(1,n+1)).numerator # _Chai Wah Wu_, Aug 29 2023 %o A365227 (PARI) a(n) = numerator(sum(j=1, n, sum(k=j, n, if (gcd(j,k)==1, 1/(j*k))))); \\ _Michel Marcus_, Aug 28 2023 %Y A365227 Cf. A365228 (denominator of this sum). %K A365227 nonn,frac %O A365227 1,2 %A A365227 _Franz Vrabec_, Aug 27 2023