This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365228 #23 Aug 29 2023 10:12:30 %S A365228 1,2,1,3,4,20,10,210,168,504,105,1155,792,1560,60060,180180,16016, %T A365228 123760,510510,29099070,21162960,335920,3233230,74364290,45762640, %U A365228 187210800,13385572200,40156716600,97349616,31054527504,166363540200,12033629407800,2831442213600,1698865328160 %N A365228 Denominator of Sum_{1<=j<=k<=n, gcd(j,k)=1} 1/(j*k). %p A365228 A365228 := proc(n) %p A365228 local j,k,s; s := 0; %p A365228 for j from 1 to n do %p A365228 for k from j to n do %p A365228 if gcd(j,k) = 1 then s := s + 1/(j*k); %p A365228 end if; %p A365228 end do; %p A365228 end do; %p A365228 denom(s); %p A365228 end proc; %p A365228 seq(A365228(n), n = 1..30); %p A365228 # second Maple program: %p A365228 a:= n-> denom(add(add(`if`(igcd(j, k)=1, 1/j, 0), j=1..k)/k, k=1..n)): %p A365228 seq(a(n), n=1..45); # _Alois P. Heinz_, Aug 28 2023 %t A365228 a[n_Integer]:=Module[{sum,j,k},sum=Sum[If[GCD[j,k]==1,1/(j*k),0],{j,1,n},{k,j,n}]; Denominator[sum]]; Table[a[n],{n,1,34}] (* _Robert P. P. McKone_, Aug 29 2023 *) %o A365228 (PARI) a(n) = denominator(sum(j=1, n, sum(k=j, n, if (gcd(j,k)==1, 1/(j*k))))); \\ _Michel Marcus_, Aug 28 2023 %o A365228 (Python) %o A365228 from fractions import Fraction %o A365228 from math import gcd %o A365228 def A365228(n): return sum(sum(Fraction(1,j) for j in range(1,k+1) if gcd(j,k)==1)/k for k in range(1,n+1)).denominator # _Chai Wah Wu_, Aug 29 2023 %Y A365228 Cf. A365227 (numerator of this sum). %K A365228 nonn,frac %O A365228 1,2 %A A365228 _Franz Vrabec_, Aug 28 2023