cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365236 a(n) is the least number of integer-sided squares that can be packed together with the n squares 1 X 1, 2 X 2, ..., n X n to fill out a rectangle.

This page as a plain text file.
%I A365236 #120 Oct 04 2023 12:33:42
%S A365236 0,1,1,3,2,4,3,3,4
%N A365236 a(n) is the least number of integer-sided squares that can be packed together with the n squares 1 X 1, 2 X 2, ..., n X n to fill out a rectangle.
%C A365236 Warning: several terms are provisional as their intended verification effectively assumed the augmenting squares were not larger than n X n. - _Peter Munn_, Oct 02 2023
%C A365236 The definition does not exclude squares larger than n X n.
%C A365236 Terms for n < 10 were verified by the use of a program.
%C A365236 a(10) <= 5.
%H A365236 Tamas Sandor Nagy, <a href="/A365236/a365236.png">Examples for a(1) - a(4)</a>.
%H A365236 Tamas Sandor Nagy, <a href="/A365236/a365236_1.png">Example for a(5)</a>.
%H A365236 Tamas Sandor Nagy, <a href="/A365236/a365236_2.png">Example for a(6)</a>.
%H A365236 Tamas Sandor Nagy, <a href="/A365236/a365236_7.png">Original upper bound examples for a(7) with 5 augmenting squares and a(8) with 6 augmenting squares</a>.
%H A365236 Tamas Sandor Nagy, <a href="/A365236/a365236_11.png">Example of a conjectured solution for a(10) with 5 augmenting squares, found by Peter Munn</a>.
%H A365236 Thomas Scheuerle, <a href="/A365236/a365236_8.png">Example for a(6) with smallest possible area</a>.
%H A365236 Thomas Scheuerle, <a href="/A365236/a365236_5.png">Example for a(7)</a>.
%H A365236 Thomas Scheuerle, <a href="/A365236/a365236_4.png">Example for a(8)</a>.
%H A365236 Thomas Scheuerle, <a href="/A365236/a365236_6.png">Example for a(9)</a>.
%H A365236 Thomas Scheuerle, <a href="/A365236/a365236_9.png">Original upper bound example for a(10) with 6 augmenting squares</a>.
%H A365236 Thomas Scheuerle, <a href="/A365236/a365236_12.png">Example for a(11) = 4 this is at the same time also a conjectured solution for a(10) = 5</a>.
%F A365236 a(n) <= 1 + Sum_{k = 1 .. ceiling((n - 1)/2)} (n + (1 - k)*floor(n/k) - 2). This upper bound corresponds to placing the squares with length n up to n - floor((n - 1)/2) all in one row. The remaining mandatory squares will then fit naturally into the rectangle n X (1/2)*(2*n - ceiling((n - 1)/2))*(ceiling((n - 1)/2) + 1).
%F A365236 a(n) > a(n - 1) - 2.
%e A365236 Compositions of rectangles that satisfy the minimal number of augmenting squares for n. Where more than one minimal composition exists for a given n, the table shows a single example. In the table body, the numbers include both the specific mandatory and augmenting squares. a(n) is the total number of squares in the rectangle minus n.
%e A365236            | 1^2   2^2   3^2   4^2   5^2   6^2   7^2   8^2   9^2  10^2 | Total
%e A365236   ----------------------------------------------------------------------------
%e A365236   a(1) = 0 |  1                                                        |   1
%e A365236   a(2) = 1 |  2     1                                                  |   3
%e A365236   a(3) = 1 |  2     1     1                                            |   4
%e A365236   a(4) = 3 |  2     1     2     2                                      |   7
%e A365236   a(5) = 2 |  2     1     1     2     1                                |   7
%e A365236   a(6) = 4 |  2     1     3     2     1     1                          |  10
%e A365236   a(7) = 3 |  1     1     1     3     1     2     1                    |  10
%e A365236   a(8) = 3 |  3     2     1     1     1     1     1     1              |  11
%e A365236   a(9) = 4 |  2     2     2     2     1     1     1     1     1        |  13
%Y A365236 Cf. A000290, A005670, A005842, A038666, A081287.
%K A365236 nonn,more
%O A365236 1,4
%A A365236 _Tamas Sandor Nagy_ and _Thomas Scheuerle_, Sep 25 2023
%E A365236 Edited by _Peter Munn_, Oct 04 2023