cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365245 G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^4*A(x)^3).

This page as a plain text file.
%I A365245 #9 Aug 28 2023 10:52:07
%S A365245 1,1,1,1,1,2,6,16,36,72,139,283,631,1487,3510,8086,18240,41004,93364,
%T A365245 216370,507353,1193113,2799681,6556243,15368798,36163695,85483537,
%U A365245 202768647,481870474,1146143965,2728316757,6502751833,15525113876,37131739582
%N A365245 G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^4*A(x)^3).
%F A365245 a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,k) * binomial(n-k+1,n-4*k)/(n-k+1).
%o A365245 (PARI) a(n) = sum(k=0, n\4, binomial(n-3*k-1, k)*binomial(n-k+1, n-4*k)/(n-k+1));
%Y A365245 Cf. A212383, A365244.
%K A365245 nonn
%O A365245 0,6
%A A365245 _Seiichi Manyama_, Aug 28 2023