cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365273 Number of vertices in the Laakso graph of order n.

This page as a plain text file.
%I A365273 #32 Oct 16 2023 06:08:51
%S A365273 6,30,174,1038,6222,37326,223950,1343694,8062158,48372942,290237646,
%T A365273 1741425870,10448555214,62691331278,376147987662,2256887925966,
%U A365273 13541327555790,81247965334734,487487792008398,2924926752050382
%N A365273 Number of vertices in the Laakso graph of order n.
%C A365273 This can be proved using the definition of the Laakso graph. The Laakso graph of level 0 is two vertices joined by an edge. The level 1 Laakso graph L_1 is obtained by replacing part of the edge of L_0 with a 4-cycle. Then the Laakso graph L_(n+1) is obtained from L_n by replacing each edge {uv} in L_n with a copy of the graph L_1, where u and v are identified with the vertices of degree 1 in L_1.
%H A365273 Paolo Xausa, <a href="/A365273/b365273.txt">Table of n, a(n) for n = 1..1000</a>
%H A365273 Y. Bartal, L.-A. Gottlieb, and O. Neiman, <a href="https://doi.org/10.1137/140977655">On the Impossibility of Dimension Reduction for Doubling Subsets of l_p</a>, SIAM Journal on Discrete Mathematics, vol. 29, no. 3. Society for Industrial & Applied Mathematics (SIAM), pp. 1207-1222, Jan. 2015.
%H A365273 F. Baudier, K. Swieçicki, and A. Swift, <a href="https://doi.org/10.1016/j.jmaa.2021.125407">No dimension reduction for doubling subsets of $\ell_q$ when q > 2 revisited</a>, Journal of Mathematical Analysis and Applications, vol. 504, no. 2. Elsevier BV, p. 125407, Dec. 2021.
%H A365273 S. J. Dilworth, D. Kutzarova, and M. I. Ostrovskii, <a href="https://doi.org/10.4153/S0008414X19000087">Lipschitz-free Spaces on Finite Metric Spaces</a>, Canadian Journal of Mathematics, vol. 72, no. 3. Canadian Mathematical Society, pp. 774-804, Feb. 13, 2019.
%H A365273 Stephen J. Dilworth, Denka Kutzarova, and Mikhail I. Ostrovskii, <a href="https://arxiv.org/abs/2007.07949">Analysis on Laakso graphs with application to the structure of transportation cost spaces</a>, arXiv:2007.07949 [math.FA], 2020-2021. See drawing of L_1 on page 4.
%H A365273 S. J. Dilworth, D. Kutzarova, and M. I. Ostrovskii, <a href="https://doi.org/10.1007/s11117-021 00821-w">Analysis on Laakso graphs with application to the structure of transportation cost spaces</a>, Positivity 25, 1403-1435 (2021).
%H A365273 S. J. Dilworth, D. Kutzarova, and S. Stankov, <a href="https://doi.org/10.1007/s43037-022-00212-7">Metric embeddings of Laakso graphs into Banach spaces.</a> Banach J. Math. Anal. 16, 60 (2022).
%H A365273 T. Laakso, <a href="https://doi.org/10.1007/s000390050003">Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality</a>, GAFA, Geom. funct. anal. 10, 111-123 (2000).
%H A365273 U. Lang and C. Plaut, <a href="https://doi.org/10.1023/A:1012093209450">Bilipschitz Embeddings of Metric Spaces into Space Forms</a>, Geometriae Dedicata 87, 285-307 (2001).
%H A365273 A. Margaris and J. C. Robinson, <a href="https://doi.org/10.5802/crmath.70">Some comments on Laakso graphs and sets of differences</a>, Comptes Rendus. Mathématique, vol. 358, no. 4. Cellule MathDoc/CEDRAM, pp. 515-521, Jul. 28, 2020.
%H A365273 MathOverflow, <a href="https://stackoverflow.com/questions/76511046/implementation-of-the-laakso-graph-in-python">Implementation of the "Laakso Graph" in Python</a>, 2023.
%H A365273 O. Neiman, <a href="https://doi.org/10.1007/s00224-014-9567-3">Low Dimensional Embeddings of Doubling Metrics</a>, Theory Comput Syst 58, 133-152 (2016).
%H A365273 Th. Schlumprecht and G. Tresch, <a href="https://arxiv.org/abs/2306.06222">“Stochastic Embeddings of Graphs into Trees.”</a> arXiv preprint arXiv:2306.06222 [math.CO], 2023.
%H A365273 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-6).
%F A365273 a(n) = a(n-1) + 4*6^(n-1).
%F A365273 a(n) = (2/5) * (2*6^n+3). - _Christian Krause_, Sep 30 2023
%e A365273 The order 1 Laakso graph L_1 has 6 vertices and 6 edges. L_(n+1) is obtained from L_n by replacing each edge in L_n with a copy of L_1. This gives us 6 vertices, then 30, then 174, and so on.
%t A365273 LinearRecurrence[{7,-6},{6,30},30] (* _Paolo Xausa_, Oct 16 2023 *)
%Y A365273 Equals twice A152596.
%K A365273 nonn,easy
%O A365273 1,1
%A A365273 _Ken McCabe_, Aug 30 2023