cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365295 a(n) is the least positive integer that can be expressed as the sum of two distinct perfect powers (A001597) in exactly n ways.

This page as a plain text file.
%I A365295 #42 Mar 03 2024 09:29:54
%S A365295 1,5,17,129,468,1025,2628,12025,32045,27625,138125,430625,204425,
%T A365295 160225,2010025,2348125,801125,1743625,2082925,4978025,4005625,
%U A365295 12325625,30525625,73046025,5928325,13287625,46437625,45177925,35409725,120737825,52073125,66438125,29641625,32846125,956974625
%N A365295 a(n) is the least positive integer that can be expressed as the sum of two distinct perfect powers (A001597) in exactly n ways.
%H A365295 Karl-Heinz Hofmann and Hugo Pfoertner, <a href="/A365295/b365295.txt">Table of n, a(n) for n = 0..77</a>
%H A365295 Karl-Heinz Hofmann, <a href="/A365295/a365295_1.txt">Python program</a>
%H A365295 Hugo Pfoertner, <a href="/A365295/a365295.txt">PARI program and results (terms < 2*10^9)</a>, Sep 10 2023.
%e A365295 For n = 2: a(2) = 17 = 1^2 + 2^4 = 2^3 + 3^2.
%e A365295 a(6) = 2628 via 3^3 + 51^2 = 2^7 + 50^2 = 18^2 + 48^2 = 21^2 + 3^7 = 2^9 + 46^2 = 30^2 + 12^3. - _David A. Corneth_, Sep 09 2023
%o A365295 (PARI) upto(n) = {n = (sqrtint(n) + 1)^2; my(v = vector(n), pows = List([1]), r = -1, res = []); for(j = 2, logint(n, 2), for(i = 2, sqrtnint(n, j), listput(pows, i^j))); pows = Set(pows); for(i = 1, #pows - 1, j = i+1; c = pows[i] + pows[j]; while(c <= n, v[c]++; j++; c = pows[i] + pows[j])); for(i = 1, #v, c = v[i]+1; if(c > #res, res = concat(res, vector(c - #res, j, oo))); if(i < res[c], res[c] = i)); res} \\ _David A. Corneth_, Sep 08 2023
%o A365295 (PARI) \\ see link
%o A365295 (Python) # see link
%Y A365295 Cf. A001597, A093195, A362424, A363040.
%K A365295 nonn
%O A365295 0,2
%A A365295 _Ilya Gutkovskiy_, Aug 31 2023
%E A365295 a(8)-a(10) from _David Consiglio, Jr._, Sep 08 2023
%E A365295 a(9) corrected and a(11)-a(34) from _Hugo Pfoertner_, Sep 10 2023