cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365298 a(n) is the smallest number k such that k*n is a cubefull exponentially odd number (A335988).

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 2, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 1, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 18, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249, 3364
Offset: 1

Views

Author

Amiram Eldar, Aug 31 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[OddQ[e], Max[e, 3] - e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^if(f[i, 2]%2, max(f[i, 2], 3) - f[i,2], 1))};

Formula

Multiplicative with a(p) = p^2, a(p^e) = p if e is even, and a(p^e) = 1 is e is odd and > 1.
a(n) = A356192(n)/n.
a(n) = 1 if and only if n is in A335988.
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(3*s) - 1/p^(3*s-2) - 1/p^(2*s) + 1/p^(2*s-1) + 1/p^(s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = (2*Pi^4/315) * Product_{p prime} (1 - p^2 - p^3 + p^4 + p^8 + p^9)/(p^8*(p+1)) = 0.207915752545... .