cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365300 a(n) is the smallest nonnegative integer such that the sum of any four ordered terms a(k), k<=n (repetitions allowed), is unique.

This page as a plain text file.
%I A365300 #49 Mar 28 2024 04:13:20
%S A365300 0,1,5,21,55,153,368,856,1424,2603,4967,8194,13663,22432,28169,47688,
%T A365300 65545,96615,146248,202507,266267,364834,450308,585328,773000,986339,
%U A365300 1162748,1472659,1993180,2275962,3012656,3552307,4590959,5404183,6601787,7893270,9340877
%N A365300 a(n) is the smallest nonnegative integer such that the sum of any four ordered terms a(k), k<=n (repetitions allowed), is unique.
%C A365300 This is the greedy B_4 sequence.
%H A365300 Chai Wah Wu, <a href="/A365300/b365300.txt">Table of n, a(n) for n = 1..50</a>
%H A365300 J. Cilleruelo and J Jimenez-Urroz, <a href="https://doi.org/10.1112/S0025579300015758">B_h[g] sequences</a>, Mathematika (47) 2000, pp. 109-115.
%H A365300 Melvyn B. Nathanson, <a href="https://arxiv.org/abs/2310.14426">The third positive element in the greedy B_h-set</a>, arXiv:2310.14426 [math.NT], 2023.
%H A365300 Melvyn B. Nathanson and Kevin O'Bryant, <a href="https://arxiv.org/abs/2311.14021">The fourth positive element in the greedy B_h-set</a>, arXiv:2311.14021 [math.NT], 2023.
%H A365300 Kevin O'Bryant, <a href="https://doi.org/10.37236/32">A complete annotated bibliography of work related to Sidon sequences</a>, Electron. J. Combin., DS11, Dynamic Surveys (2004), 39 pp.
%e A365300 a(4) != 12 because 12+1+1+1 = 5+5+5+0.
%o A365300 (Python)
%o A365300 def GreedyBh(h, seed, stopat):
%o A365300     A = [set() for _ in range(h+1)]
%o A365300     A[1] = set(seed)    # A[i] will hold the i-fold sumset
%o A365300     for j in range(2,h+1): # {2,...,h}
%o A365300         for x in A[1]:
%o A365300             A[j].update([x+y for y in A[j-1]])
%o A365300     w = max(A[1])+1
%o A365300     while w <= stopat:
%o A365300         wgood = True
%o A365300         for k in range(1,h):
%o A365300             if wgood:
%o A365300                 for j in range(k+1,h+1):
%o A365300                     if wgood and (A[j].intersection([(j-k)*w + x for x in A[k]]) != set()):
%o A365300                         wgood = False
%o A365300         if wgood:
%o A365300             A[1].add(w)
%o A365300             for k in range(2,h+1): # update A[k]
%o A365300                 for j in range(1,k):
%o A365300                     A[k].update([(k-j)*w + x for x in A[j]])
%o A365300         w += 1
%o A365300         return A[1]
%o A365300 GreedyBh(4,[0],10000)
%o A365300 (Python)
%o A365300 from itertools import count, islice, combinations_with_replacement
%o A365300 def A365300_gen(): # generator of terms
%o A365300     aset, alist = set(), []
%o A365300     for k in count(0):
%o A365300         bset = set()
%o A365300         for d in combinations_with_replacement(alist+[k],3):
%o A365300             if (m:=sum(d)+k) in aset:
%o A365300                 break
%o A365300             bset.add(m)
%o A365300         else:
%o A365300             yield k
%o A365300             alist.append(k)
%o A365300             aset |= bset
%o A365300 A365300_list = list(islice(A365300_gen(),20)) # _Chai Wah Wu_, Sep 01 2023
%Y A365300 Row 4 of A365515.
%Y A365300 Cf. A025582, A051912, A365301, A365302, A365303, A365304, A365305.
%K A365300 nonn
%O A365300 1,3
%A A365300 _Kevin O'Bryant_, Aug 31 2023
%E A365300 a(27)-a(37) from _Chai Wah Wu_, Sep 01 2023