This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365301 #52 Mar 28 2024 04:13:39 %S A365301 0,1,6,31,108,366,926,2286,5733,12905,27316,44676,94545,147031,257637, %T A365301 435387,643320,1107715,1760092,2563547,3744446,5582657,8089160, %U A365301 11373419,15575157,21480927,28569028,40893371,53425354,69774260,93548428,119627554 %N A365301 a(n) is the smallest nonnegative integer such that the sum of any five ordered terms a(k), k<=n (repetitions allowed), is unique. %C A365301 This is the greedy B_5 sequence. %H A365301 J. Cilleruelo and J Jimenez-Urroz, <a href="https://doi.org/10.1112/S0025579300015758">B_h[g] sequences</a>, Mathematika (47) 2000, pp. 109-115. %H A365301 Melvyn B. Nathanson, <a href="https://arxiv.org/abs/2310.14426">The third positive element in the greedy B_h-set</a>, arXiv:2310.14426 [math.NT], 2023. %H A365301 Melvyn B. Nathanson and Kevin O'Bryant, <a href="https://arxiv.org/abs/2311.14021">The fourth positive element in the greedy B_h-set</a>, arXiv:2311.14021 [math.NT], 2023. %H A365301 Kevin O'Bryant, <a href="https://doi.org/10.37236/32">A complete annotated bibliography of work related to Sidon sequences</a>, Electron. J. Combin., DS11, Dynamic Surveys (2004), 39 pp. %e A365301 a(4) != 20 because 20+1+1+1+1 = 6+6+6+6+0. %o A365301 (Python) %o A365301 def GreedyBh(h, seed, stopat): %o A365301 A = [set() for _ in range(h+1)] %o A365301 A[1] = set(seed) # A[i] will hold the i-fold sumset %o A365301 for j in range(2,h+1): # {2,...,h} %o A365301 for x in A[1]: %o A365301 A[j].update([x+y for y in A[j-1]]) %o A365301 w = max(A[1])+1 %o A365301 while w <= stopat: %o A365301 wgood = True %o A365301 for k in range(1,h): %o A365301 if wgood: %o A365301 for j in range(k+1,h+1): %o A365301 if wgood and (A[j].intersection([(j-k)*w + x for x in A[k]]) != set()): %o A365301 wgood = False %o A365301 if wgood: %o A365301 A[1].add(w) %o A365301 for k in range(2,h+1): # update A[k] %o A365301 for j in range(1,k): %o A365301 A[k].update([(k-j)*w + x for x in A[j]]) %o A365301 w += 1 %o A365301 return A[1] %o A365301 GreedyBh(5,[0],10000) %o A365301 (Python) %o A365301 from itertools import count, islice, combinations_with_replacement %o A365301 def A365301_gen(): # generator of terms %o A365301 aset, alist = set(), [] %o A365301 for k in count(0): %o A365301 bset = set() %o A365301 for d in combinations_with_replacement(alist+[k],4): %o A365301 if (m:=sum(d)+k) in aset: %o A365301 break %o A365301 bset.add(m) %o A365301 else: %o A365301 yield k %o A365301 alist.append(k) %o A365301 aset |= bset %o A365301 A365301_list = list(islice(A365301_gen(),10)) # _Chai Wah Wu_, Sep 01 2023 %Y A365301 Row 5 of A365515. %Y A365301 Cf. A025582, A051912, A365300, A365302, A365303, A365304, A365305. %K A365301 nonn,more %O A365301 1,3 %A A365301 _Kevin O'Bryant_, Aug 31 2023 %E A365301 a(18)-a(28) from _Chai Wah Wu_, Sep 01 2023 %E A365301 a(29)-a(30) from _Chai Wah Wu_, Sep 10 2023 %E A365301 a(31)-a(32) from _Chai Wah Wu_, Mar 02 2024