This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365302 #44 Mar 28 2024 04:13:51 %S A365302 0,1,7,43,154,668,2214,6876,16864,41970,94710,202027,429733,889207, %T A365302 1549511,3238700,5053317,8502061,15583775,25070899,40588284,63604514 %N A365302 a(n) is the smallest nonnegative integer such that the sum of any six ordered terms a(k), k<=n (repetitions allowed), is unique. %C A365302 This is the greedy B_6 sequence. %H A365302 J. Cilleruelo and J Jimenez-Urroz, <a href="https://doi.org/10.1112/S0025579300015758">B_h[g] sequences</a>, Mathematika (47) 2000, pp. 109-115. %H A365302 Melvyn B. Nathanson, <a href="https://arxiv.org/abs/2310.14426">The third positive element in the greedy B_h-set</a>, arXiv:2310.14426 [math.NT], 2023. %H A365302 Melvyn B. Nathanson and Kevin O'Bryant, <a href="https://arxiv.org/abs/2311.14021">The fourth positive element in the greedy B_h-set</a>, arXiv:2311.14021 [math.NT], 2023. %H A365302 Kevin O'Bryant, <a href="https://doi.org/10.37236/32">A complete annotated bibliography of work related to Sidon sequences</a>, Electron. J. Combin., DS11, Dynamic Surveys (2004), 39 pp. %e A365302 a(5) != 50 because 50+1+1+1+1+0 = 43+7+1+1+1+1. %o A365302 (Python) %o A365302 def GreedyBh(h, seed, stopat): %o A365302 A = [set() for _ in range(h+1)] %o A365302 A[1] = set(seed) # A[i] will hold the i-fold sumset %o A365302 for j in range(2,h+1): # {2,...,h} %o A365302 for x in A[1]: %o A365302 A[j].update([x+y for y in A[j-1]]) %o A365302 w = max(A[1])+1 %o A365302 while w <= stopat: %o A365302 wgood = True %o A365302 for k in range(1,h): %o A365302 if wgood: %o A365302 for j in range(k+1,h+1): %o A365302 if wgood and (A[j].intersection([(j-k)*w + x for x in A[k]]) != set()): %o A365302 wgood = False %o A365302 if wgood: %o A365302 A[1].add(w) %o A365302 for k in range(2,h+1): # update A[k] %o A365302 for j in range(1,k): %o A365302 A[k].update([(k-j)*w + x for x in A[j]]) %o A365302 w += 1 %o A365302 return A[1] %o A365302 GreedyBh(6,[0],10000) %o A365302 (Python) %o A365302 from itertools import count, islice, combinations_with_replacement %o A365302 def A365302_gen(): # generator of terms %o A365302 aset, alist = set(), [] %o A365302 for k in count(0): %o A365302 bset = set() %o A365302 for d in combinations_with_replacement(alist+[k],5): %o A365302 if (m:=sum(d)+k) in aset: %o A365302 break %o A365302 bset.add(m) %o A365302 else: %o A365302 yield k %o A365302 alist.append(k) %o A365302 aset |= bset %o A365302 A365302_list = list(islice(A365302_gen(),10)) # _Chai Wah Wu_, Sep 01 2023 %Y A365302 Row 6 of A365515. %Y A365302 Cf. A025582, A051912, A365300, A365301, A365303, A365304, A365305. %K A365302 nonn,more %O A365302 1,3 %A A365302 _Kevin O'Bryant_, Aug 31 2023 %E A365302 a(15)-a(19) from _Chai Wah Wu_, Sep 01 2023 %E A365302 a(20)-a(22) from _Chai Wah Wu_, Sep 09 2023