cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365303 a(n) is the smallest nonnegative integer such that the sum of any seven ordered terms a(k), k<=n (repetitions allowed), is unique.

This page as a plain text file.
%I A365303 #42 Mar 07 2024 17:27:43
%S A365303 0,1,8,57,256,1153,4181,14180,47381,115267,307214,737909,1682367,
%T A365303 3850940,8557010,18311575,37925058,61662056
%N A365303 a(n) is the smallest nonnegative integer such that the sum of any seven ordered terms a(k), k<=n (repetitions allowed), is unique.
%C A365303 This is the greedy B_7 sequence.
%H A365303 J. Cilleruelo and J Jimenez-Urroz, <a href="https://doi.org/10.1112/S0025579300015758">B_h[g] sequences</a>, Mathematika (47) 2000, pp. 109-115.
%H A365303 Melvyn B. Nathanson, <a href="https://arxiv.org/abs/2310.14426">The third positive element in the greedy B_h-set</a>, arXiv:2310.14426 [math.NT], 2023.
%H A365303 Melvyn B. Nathanson and Kevin O'Bryant, <a href="https://arxiv.org/abs/2311.14021">The fourth positive element in the greedy B_h-set</a>, arXiv:2311.14021 [math.NT], 2023.
%H A365303 Kevin O'Bryant, <a href="https://doi.org/10.37236/32">A complete annotated bibliography of work related to Sidon sequences</a>, Electron. J. Combin., DS11, Dynamic Surveys (2004), 39 pp.
%e A365303 a(3) != 7 because 7+0+0+0+0+0+0 = 1+1+1+1+1+1+1.
%o A365303 (Python)
%o A365303 def GreedyBh(h, seed, stopat):
%o A365303     A = [set() for _ in range(h+1)]
%o A365303     A[1] = set(seed)    # A[i] will hold the i-fold sumset
%o A365303     for j in range(2,h+1): # {2,...,h}
%o A365303         for x in A[1]:
%o A365303             A[j].update([x+y for y in A[j-1]])
%o A365303     w = max(A[1])+1
%o A365303     while w <= stopat:
%o A365303         wgood = True
%o A365303         for k in range(1,h):
%o A365303             if wgood:
%o A365303                 for j in range(k+1,h+1):
%o A365303                     if wgood and (A[j].intersection([(j-k)*w + x for x in A[k]]) != set()):
%o A365303                         wgood = False
%o A365303         if wgood:
%o A365303             A[1].add(w)
%o A365303             for k in range(2,h+1): # update A[k]
%o A365303                 for j in range(1,k):
%o A365303                     A[k].update([(k-j)*w + x for x in A[j]])
%o A365303         w += 1
%o A365303         return A[1]
%o A365303 GreedyBh(7,[0],10000)
%o A365303 (Python)
%o A365303 from itertools import count, islice, combinations_with_replacement
%o A365303 def A365303_gen(): # generator of terms
%o A365303     aset, alist = set(), []
%o A365303     for k in count(0):
%o A365303         bset = set()
%o A365303         for d in combinations_with_replacement(alist+[k],6):
%o A365303             if (m:=sum(d)+k) in aset:
%o A365303                 break
%o A365303             bset.add(m)
%o A365303         else:
%o A365303             yield k
%o A365303             alist.append(k)
%o A365303             aset |= bset
%o A365303 A365303_list = list(islice(A365303_gen(),10)) # _Chai Wah Wu_, Sep 01 2023
%Y A365303 Row 7 of A365515.
%Y A365303 Cf. A025582, A051912, A365300, A365301, A365302, A365304, A365305.
%K A365303 nonn,more
%O A365303 1,3
%A A365303 _Kevin O'Bryant_, Aug 31 2023
%E A365303 a(13)-a(18) from _Chai Wah Wu_, Sep 13 2023