This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365303 #42 Mar 07 2024 17:27:43 %S A365303 0,1,8,57,256,1153,4181,14180,47381,115267,307214,737909,1682367, %T A365303 3850940,8557010,18311575,37925058,61662056 %N A365303 a(n) is the smallest nonnegative integer such that the sum of any seven ordered terms a(k), k<=n (repetitions allowed), is unique. %C A365303 This is the greedy B_7 sequence. %H A365303 J. Cilleruelo and J Jimenez-Urroz, <a href="https://doi.org/10.1112/S0025579300015758">B_h[g] sequences</a>, Mathematika (47) 2000, pp. 109-115. %H A365303 Melvyn B. Nathanson, <a href="https://arxiv.org/abs/2310.14426">The third positive element in the greedy B_h-set</a>, arXiv:2310.14426 [math.NT], 2023. %H A365303 Melvyn B. Nathanson and Kevin O'Bryant, <a href="https://arxiv.org/abs/2311.14021">The fourth positive element in the greedy B_h-set</a>, arXiv:2311.14021 [math.NT], 2023. %H A365303 Kevin O'Bryant, <a href="https://doi.org/10.37236/32">A complete annotated bibliography of work related to Sidon sequences</a>, Electron. J. Combin., DS11, Dynamic Surveys (2004), 39 pp. %e A365303 a(3) != 7 because 7+0+0+0+0+0+0 = 1+1+1+1+1+1+1. %o A365303 (Python) %o A365303 def GreedyBh(h, seed, stopat): %o A365303 A = [set() for _ in range(h+1)] %o A365303 A[1] = set(seed) # A[i] will hold the i-fold sumset %o A365303 for j in range(2,h+1): # {2,...,h} %o A365303 for x in A[1]: %o A365303 A[j].update([x+y for y in A[j-1]]) %o A365303 w = max(A[1])+1 %o A365303 while w <= stopat: %o A365303 wgood = True %o A365303 for k in range(1,h): %o A365303 if wgood: %o A365303 for j in range(k+1,h+1): %o A365303 if wgood and (A[j].intersection([(j-k)*w + x for x in A[k]]) != set()): %o A365303 wgood = False %o A365303 if wgood: %o A365303 A[1].add(w) %o A365303 for k in range(2,h+1): # update A[k] %o A365303 for j in range(1,k): %o A365303 A[k].update([(k-j)*w + x for x in A[j]]) %o A365303 w += 1 %o A365303 return A[1] %o A365303 GreedyBh(7,[0],10000) %o A365303 (Python) %o A365303 from itertools import count, islice, combinations_with_replacement %o A365303 def A365303_gen(): # generator of terms %o A365303 aset, alist = set(), [] %o A365303 for k in count(0): %o A365303 bset = set() %o A365303 for d in combinations_with_replacement(alist+[k],6): %o A365303 if (m:=sum(d)+k) in aset: %o A365303 break %o A365303 bset.add(m) %o A365303 else: %o A365303 yield k %o A365303 alist.append(k) %o A365303 aset |= bset %o A365303 A365303_list = list(islice(A365303_gen(),10)) # _Chai Wah Wu_, Sep 01 2023 %Y A365303 Row 7 of A365515. %Y A365303 Cf. A025582, A051912, A365300, A365301, A365302, A365304, A365305. %K A365303 nonn,more %O A365303 1,3 %A A365303 _Kevin O'Bryant_, Aug 31 2023 %E A365303 a(13)-a(18) from _Chai Wah Wu_, Sep 13 2023