cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365304 a(n) is the smallest nonnegative integer such that the sum of any eight ordered terms a(k), k<=n (repetitions allowed), is unique.

This page as a plain text file.
%I A365304 #37 Mar 07 2024 16:53:27
%S A365304 0,1,9,73,333,1822,8043,28296,102042,338447,1054824,2569353,6237718,
%T A365304 15947108,36179796
%N A365304 a(n) is the smallest nonnegative integer such that the sum of any eight ordered terms a(k), k<=n (repetitions allowed), is unique.
%C A365304 This is the greedy B_8 sequence.
%H A365304 J. Cilleruelo and J Jimenez-Urroz, <a href="https://doi.org/10.1112/S0025579300015758">B_h[g] sequences</a>, Mathematika (47) 2000, pp. 109-115.
%H A365304 Melvyn B. Nathanson and Kevin O'Bryant, <a href="https://arxiv.org/abs/2311.14021">The fourth positive element in the greedy B_h-set</a>, arXiv:2311.14021 [math.NT], 2023.
%H A365304 Kevin O'Bryant, <a href="https://doi.org/10.37236/32">A complete annotated bibliography of work related to Sidon sequences</a>, Electron. J. Combin., DS11, Dynamic Surveys (2004), 39 pp.
%e A365304 a(4) != 70 because 70+1+1+0+0+0+0+0 = 9+9+9+9+9+9+9+0.
%o A365304 (Python)
%o A365304 def GreedyBh(h, seed, stopat):
%o A365304     A = [set() for _ in range(h+1)]
%o A365304     A[1] = set(seed)    # A[i] will hold the i-fold sumset
%o A365304     for j in range(2,h+1): # {2,...,h}
%o A365304         for x in A[1]:
%o A365304             A[j].update([x+y for y in A[j-1]])
%o A365304     w = max(A[1])+1
%o A365304     while w <= stopat:
%o A365304         wgood = True
%o A365304         for k in range(1,h):
%o A365304             if wgood:
%o A365304                 for j in range(k+1,h+1):
%o A365304                     if wgood and (A[j].intersection([(j-k)*w + x for x in A[k]]) != set()):
%o A365304                         wgood = False
%o A365304         if wgood:
%o A365304             A[1].add(w)
%o A365304             for k in range(2,h+1): # update A[k]
%o A365304                 for j in range(1,k):
%o A365304                     A[k].update([(k-j)*w + x for x in A[j]])
%o A365304         w += 1
%o A365304         return A[1]
%o A365304 GreedyBh(8,[0],10000)
%o A365304 (Python)
%o A365304 from itertools import count, islice, combinations_with_replacement
%o A365304 def A365304_gen(): # generator of terms
%o A365304     aset, alist = set(), []
%o A365304     for k in count(0):
%o A365304         bset = set()
%o A365304         for d in combinations_with_replacement(alist+[k],7):
%o A365304             if (m:=sum(d)+k) in aset:
%o A365304                 break
%o A365304             bset.add(m)
%o A365304         else:
%o A365304             yield k
%o A365304             alist.append(k)
%o A365304             aset |= bset
%o A365304 A365304_list = list(islice(A365304_gen(),10)) # _Chai Wah Wu_, Sep 01 2023
%Y A365304 Row 8 of A365515.
%Y A365304 Cf. A025582, A051912, A365300, A365301, A365302, A365303, A365305.
%K A365304 nonn,more
%O A365304 1,3
%A A365304 _Kevin O'Bryant_, Aug 31 2023
%E A365304 a(11)-a(15) from _Chai Wah Wu_, Sep 13 2023