A365305 a(n) is the smallest nonnegative integer such that the sum of any nine ordered terms a(k), k<=n (repetitions allowed), is unique.
0, 1, 10, 91, 500, 3119, 13818, 59174, 211135, 742330, 2464208, 7616100, 19241477, 56562573
Offset: 1
Examples
a(4) != 72 because 72+1+1+1+1+1+1+1+1+0 = 10+10+10+10+10+10+10+10+0.
Links
- J. Cilleruelo and J. Jimenez-Urroz, B_h[g] sequences, Mathematika (47) 2000, pp. 109-115.
- Melvyn B. Nathanson, The third positive element in the greedy B_h-set, arXiv:2310.14426 [math.NT], 2023.
- Melvyn B. Nathanson and Kevin O'Bryant, The fourth positive element in the greedy B_h-set, arXiv:2311.14021 [math.NT], 2023.
- Kevin O'Bryant, A complete annotated bibliography of work related to Sidon sequences, Electron. J. Combin., DS11, Dynamic Surveys (2004), 39 pp.
Programs
-
Python
def GreedyBh(h, seed, stopat): A = [set() for _ in range(h+1)] A[1] = set(seed) # A[i] will hold the i-fold sumset for j in range(2,h+1): # {2,...,h} for x in A[1]: A[j].update([x+y for y in A[j-1]]) w = max(A[1])+1 while w <= stopat: wgood = True for k in range(1,h): if wgood: for j in range(k+1,h+1): if wgood and (A[j].intersection([(j-k)*w + x for x in A[k]]) != set()): wgood = False if wgood: A[1].add(w) for k in range(2,h+1): # update A[k] for j in range(1,k): A[k].update([(k-j)*w + x for x in A[j]]) w += 1 return A[1] GreedyBh(9,[0],10000)
-
Python
from itertools import count, islice, combinations_with_replacement def A365305_gen(): # generator of terms aset, alist = set(), [] for k in count(0): bset = set() for d in combinations_with_replacement(alist+[k],8): if (m:=sum(d)+k) in aset: break bset.add(m) else: yield k alist.append(k) aset |= bset A365305_list = list(islice(A365305_gen(),10)) # Chai Wah Wu, Sep 01 2023
Extensions
a(11)-a(14) from Chai Wah Wu, Sep 13 2023
Comments