cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365308 Powers of primorials P(k)^m, k > 1, m > 1, where P(k) = A002110(k).

Original entry on oeis.org

36, 216, 900, 1296, 7776, 27000, 44100, 46656, 279936, 810000, 1679616, 5336100, 9261000, 10077696, 24300000, 60466176, 362797056, 729000000, 901800900, 1944810000, 2176782336, 12326391000, 13060694016, 21870000000, 78364164096, 260620460100, 408410100000, 470184984576
Offset: 1

Views

Author

Michael De Vlieger, Oct 02 2023

Keywords

Comments

Proper subset of A303606, in turn a proper subset of A286708, in turn a proper subset of A126706.
Numbers in A322793 that are not powers of 2.

Examples

			Terms less than 10^4 include P(2)^2 = 36, P(2)^3 = 216, P(2)^4 = 1296, P(2)^5 = 7776, and P(3)^2 = 900.
		

Crossrefs

Programs

  • Mathematica
    nn = 2^39; k = 2; P = 6; Union@ Reap[While[j = 2; While[P^j < nn, Sow[P^j]; j++]; j > 2, k++; P *= Prime[k]] ][[-1, 1]]

Formula

Intersection of A100778 and A303606.
This sequence is {A325374 \ {A002110 \ {1,2}}} = {A322793 \ {A000079 \ {1,2}}}.
Sum_{n>=1} 1/a(n) = Sum_{k>=2} 1/(P(k)*(P(k)-1)) = 0.03450573145072369022... . - Amiram Eldar, Mar 10 2024