A365311 Number of strict integer partitions with sum <= n that can be linearly combined using nonnegative coefficients to obtain n.
0, 1, 2, 3, 5, 6, 11, 12, 20, 24, 35, 38, 63, 63, 92, 112, 148, 160, 230, 244, 339, 383, 478, 533, 726, 781, 978, 1123, 1394, 1526, 1960, 2112, 2630, 2945, 3518, 3964, 4856, 5261, 6307, 7099, 8464, 9258, 11140, 12155, 14419, 16093, 18589, 20565, 24342, 26597, 30948
Offset: 0
Keywords
Examples
The strict partition (6,3) cannot be linearly combined to obtain 10, so is not counted under a(10). The strict partition (4,2) has 6 = 1*4 + 1*2 so is counted under a(6), but (4,2) cannot be linearly combined to obtain 7 so is not counted under a(7). The a(1) = 1 through a(7) = 12 strict partitions: (1) (1) (1) (1) (1) (1) (1) (2) (3) (2) (5) (2) (7) (2,1) (4) (2,1) (3) (2,1) (2,1) (3,1) (6) (3,1) (3,1) (3,2) (2,1) (3,2) (4,1) (3,1) (4,1) (3,2) (4,3) (4,1) (5,1) (4,2) (5,2) (5,1) (6,1) (3,2,1) (3,2,1) (4,2,1)
Links
- Steven R. Finch, Monoids of natural numbers, March 17, 2009.
Crossrefs
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Select[Join@@Array[IntegerPartitions,n],UnsameQ@@#&],combs[n,#]!={}&]],{n,10}]
-
Python
from math import isqrt from sympy.utilities.iterables import partitions def A365311(n): a = {tuple(sorted(set(p))) for p in partitions(n)} return sum(1 for m in range(1,n+1) for b in partitions(m,m=isqrt(1+(n<<3))>>1) if max(b.values()) == 1 and any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023
Extensions
a(26)-a(50) from Chai Wah Wu, Sep 13 2023