This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365312 #16 Sep 14 2023 01:09:38 %S A365312 0,0,0,1,1,3,2,6,4,8,7,16,6,24,17,24,20,46,22,62,31,63,57,106,35,122, %T A365312 90,137,88,212,74,262,134,267,206,345,121,476,294,484,232,698,242,837, %U A365312 389,763,571,1185,318,1327,634,1392,727,1927,640,2056,827,2233,1328 %N A365312 Number of strict integer partitions with sum <= n that cannot be linearly combined using nonnegative coefficients to obtain n. %e A365312 The strict partition (7,3,2) has 19 = 1*7 + 2*3 + 3*2 so is not counted under a(19). %e A365312 The strict partition (9,6,3) cannot be linearly combined to obtain 19, so is counted under a(19). %e A365312 The a(0) = 0 through a(11) = 16 strict partitions: %e A365312 . . . (2) (3) (2) (4) (2) (3) (2) (3) (2) %e A365312 (3) (5) (3) (5) (4) (4) (3) %e A365312 (4) (4) (6) (5) (6) (4) %e A365312 (5) (7) (6) (7) (5) %e A365312 (6) (7) (8) (6) %e A365312 (4,2) (8) (9) (7) %e A365312 (4,2) (6,3) (8) %e A365312 (6,2) (9) %e A365312 (10) %e A365312 (4,2) %e A365312 (5,4) %e A365312 (6,2) %e A365312 (6,3) %e A365312 (6,4) %e A365312 (7,3) %e A365312 (8,2) %t A365312 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365312 Table[Length[Select[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&],combs[n,#]=={}&]],{n,0,10}] %o A365312 (Python) %o A365312 from math import isqrt %o A365312 from sympy.utilities.iterables import partitions %o A365312 def A365312(n): %o A365312 a = {tuple(sorted(set(p))) for p in partitions(n)} %o A365312 return sum(1 for m in range(1,n+1) for b in partitions(m,m=isqrt(1+(n<<3))>>1) if max(b.values()) == 1 and not any(set(d).issubset(set(b)) for d in a)) # _Chai Wah Wu_, Sep 13 2023 %Y A365312 The complement for positive coefficients is counted by A088314. %Y A365312 For positive coefficients we have A088528. %Y A365312 The complement is counted by A365311. %Y A365312 For non-strict partitions we have A365378, complement A365379. %Y A365312 The version for subsets is A365380, complement A365073. %Y A365312 A000041 counts integer partitions, strict A000009. %Y A365312 A008284 counts partitions by length, strict A008289. %Y A365312 A116861 and A364916 count linear combinations of strict partitions. %Y A365312 A364350 counts combination-free strict partitions, non-strict A364915. %Y A365312 A364839 counts combination-full strict partitions, non-strict A364913. %Y A365312 Cf. A093971, A237113, A237668, A326080, A363225, A364272, A364534, A364914, A365043, A365314, A365320. %K A365312 nonn %O A365312 0,6 %A A365312 _Gus Wiseman_, Sep 05 2023 %E A365312 a(26)-a(58) from _Chai Wah Wu_, Sep 13 2023