This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365314 #25 Sep 13 2023 05:58:51 %S A365314 0,0,1,3,6,8,14,14,23,24,33,28,52,36,55,58,73,53,95,62,110,94,105,81, %T A365314 165,105,133,132,176,112,225,123,210,174,192,186,306,157,223,218,328, %U A365314 180,354,192,324,315,288,216,474,260,383,311,404,254,491,338,511,360 %N A365314 Number of unordered pairs of distinct positive integers <= n that can be linearly combined using nonnegative coefficients to obtain n. %C A365314 Is there only one case of nonzero adjacent equal parts, at position n = 6? %H A365314 Chai Wah Wu, <a href="/A365314/b365314.txt">Table of n, a(n) for n = 0..10000</a> %e A365314 We have 19 = 4*3 + 1*7, so the pair (3,7) is counted under a(19). %e A365314 The a(2) = 1 through a(7) = 14 pairs: %e A365314 (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) %e A365314 (1,3) (1,3) (1,3) (1,3) (1,3) %e A365314 (2,3) (1,4) (1,4) (1,4) (1,4) %e A365314 (2,3) (1,5) (1,5) (1,5) %e A365314 (2,4) (2,3) (1,6) (1,6) %e A365314 (3,4) (2,5) (2,3) (1,7) %e A365314 (3,5) (2,4) (2,3) %e A365314 (4,5) (2,5) (2,5) %e A365314 (2,6) (2,7) %e A365314 (3,4) (3,4) %e A365314 (3,5) (3,7) %e A365314 (3,6) (4,7) %e A365314 (4,6) (5,7) %e A365314 (5,6) (6,7) %t A365314 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365314 Table[Length[Select[Subsets[Range[n],{2}], combs[n,#]!={}&]],{n,0,30}] %o A365314 (Python) %o A365314 from itertools import count %o A365314 from sympy import divisors %o A365314 def A365314(n): %o A365314 a = set() %o A365314 for i in range(1,n+1): %o A365314 if not n%i: %o A365314 a.update(tuple(sorted((i,j))) for j in range(1,n+1) if j!=i) %o A365314 else: %o A365314 for j in count(0,i): %o A365314 if j > n: %o A365314 break %o A365314 k = n-j %o A365314 for d in divisors(k): %o A365314 if d>=i: %o A365314 break %o A365314 a.add((d,i)) %o A365314 return len(a) # _Chai Wah Wu_, Sep 12 2023 %Y A365314 The unrestricted version is A000217, ranks A001358. %Y A365314 For all subsets instead of just pairs we have A365073, complement A365380. %Y A365314 For strict partitions we have A365311, complement A365312. %Y A365314 The case of positive coefficients is A365315, for all subsets A088314. %Y A365314 The binary complement is A365320, positive A365321. %Y A365314 For partitions we have A365379, complement A365378. %Y A365314 A004526 counts partitions of length 2, shift right for strict. %Y A365314 A007865 counts sum-free subsets, complement A093971. %Y A365314 A179822 and A326080 count sum-closed subsets. %Y A365314 A364350 counts combination-free strict partitions. %Y A365314 A364914/A365046 count combination-full subsets, complement A326083/A124506. %Y A365314 Cf. A070880, A088809, A151897, A326020, A365043, A365322, A365383. %K A365314 nonn %O A365314 0,4 %A A365314 _Gus Wiseman_, Sep 05 2023