This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365320 #14 Sep 14 2023 01:11:14 %S A365320 0,0,0,0,0,2,1,7,5,12,12,27,14,42,36,47,47,83,58,109,80,116,126,172, %T A365320 111,195,192,219,202,294,210,342,286,354,369,409,324,509,480,523,452, %U A365320 640,507,711,622,675,747,865,654,916,842,964,922,1124,940,1147,1029 %N A365320 Number of pairs of distinct positive integers <= n that cannot be linearly combined with nonnegative coefficients to obtain n. %C A365320 Are there only two cases of nonzero adjacent equal parts, at positions n = 9, 15? %e A365320 The pair p = (3,6) cannot be linearly combined to obtain 8 or 10, so p is counted under a(8) and a(10), but we have 9 = 1*3 + 1*6 or 9 = 3*3 + 0*6, so p not counted under a(9). %e A365320 The a(5) = 2 through a(10) = 12 pairs: %e A365320 (2,4) (4,5) (2,4) (3,6) (2,4) (3,6) %e A365320 (3,4) (2,6) (3,7) (2,6) (3,8) %e A365320 (3,5) (5,6) (2,8) (3,9) %e A365320 (3,6) (5,7) (4,6) (4,7) %e A365320 (4,5) (6,7) (4,7) (4,8) %e A365320 (4,6) (4,8) (4,9) %e A365320 (5,6) (5,6) (6,7) %e A365320 (5,7) (6,8) %e A365320 (5,8) (6,9) %e A365320 (6,7) (7,8) %e A365320 (6,8) (7,9) %e A365320 (7,8) (8,9) %t A365320 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365320 Table[Length[Select[Subsets[Range[n],{2}],combs[n,#]=={}&]],{n,0,30}] %o A365320 (Python) %o A365320 from itertools import count %o A365320 from sympy import divisors %o A365320 def A365320(n): %o A365320 a = set() %o A365320 for i in range(1,n+1): %o A365320 if not n%i: %o A365320 a.update(tuple(sorted((i,j))) for j in range(1,n+1) if j!=i) %o A365320 else: %o A365320 for j in count(0,i): %o A365320 if j > n: %o A365320 break %o A365320 k = n-j %o A365320 for d in divisors(k): %o A365320 if d>=i: %o A365320 break %o A365320 a.add((d,i)) %o A365320 return (n*(n-1)>>1)-len(a) # _Chai Wah Wu_, Sep 13 2023 %Y A365320 The unrestricted version is A000217, ranks A001358. %Y A365320 For strict partitions we have A365312, complement A365311. %Y A365320 The (binary) complement is A365314, positive A365315. %Y A365320 The case of positive coefficients is A365321, for all subsets A365322. %Y A365320 For partitions we have A365378, complement A365379. %Y A365320 For all subsets instead of just pairs we have A365380, complement A365073. %Y A365320 A004526 counts partitions of length 2, shift right for strict. %Y A365320 A007865 counts sum-free subsets, complement A093971. %Y A365320 A179822 and A326080 count sum-closed subsets. %Y A365320 A326083 and A124506 appear to count combination-free subsets. %Y A365320 A364350 counts combination-free strict partitions. %Y A365320 A364914 and A365046 count combination-full subsets. %Y A365320 Cf. A070880, A088314, A088809, A151897, A326020, A364839. %K A365320 nonn %O A365320 0,6 %A A365320 _Gus Wiseman_, Sep 06 2023