This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365321 #11 Sep 13 2023 06:05:01 %S A365321 0,0,1,2,4,6,10,13,18,24,30,37,46,54,63,77,85,99,111,127,141,161,171, %T A365321 194,210,235,246,277,293,322,342,372,389,428,441,491,504,545,561,612, %U A365321 635,680,701,753,773,836,846,911,932,1000,1017,1082,1103,1176,1193 %N A365321 Number of pairs of distinct positive integers <= n that cannot be linearly combined with positive coefficients to obtain n. %C A365321 We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0. %e A365321 For the pair p = (2,3) we have 4 = 2*2 + 0*3, so p is not counted under A365320(4), but it is not possible to write 4 as a positive linear combination of 2 and 3, so p is counted under a(4). %e A365321 The a(2) = 1 through a(7) = 13 pairs: %e A365321 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) %e A365321 (2,3) (2,3) (2,4) (2,3) (2,4) %e A365321 (2,4) (2,5) (2,5) (2,6) %e A365321 (3,4) (3,4) (2,6) (2,7) %e A365321 (3,5) (3,4) (3,5) %e A365321 (4,5) (3,5) (3,6) %e A365321 (3,6) (3,7) %e A365321 (4,5) (4,5) %e A365321 (4,6) (4,6) %e A365321 (5,6) (4,7) %e A365321 (5,6) %e A365321 (5,7) %e A365321 (6,7) %t A365321 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365321 Table[Length[Select[Subsets[Range[n],{2}], combp[n,#]=={}&]],{n,0,30}] %o A365321 (Python) %o A365321 from itertools import count %o A365321 from sympy import divisors %o A365321 def A365321(n): %o A365321 a = set() %o A365321 for i in range(1,n+1): %o A365321 for j in count(i,i): %o A365321 if j >= n: %o A365321 break %o A365321 for d in divisors(n-j): %o A365321 if d>=i: %o A365321 break %o A365321 a.add((d,i)) %o A365321 return (n*(n-1)>>1)-len(a) # _Chai Wah Wu_, Sep 12 2023 %Y A365321 The unrestricted version is A000217, ranks A001358. %Y A365321 For strict partitions we have A088528, complement A088314. %Y A365321 The (binary) complement is A365315, nonnegative A365314. %Y A365321 For nonnegative coefficients we have A365320, for subsets A365380. %Y A365321 For all subsets instead of just pairs we have A365322, complement A088314. %Y A365321 A004526 counts partitions of length 2, shift right for strict. %Y A365321 A007865 counts sum-free subsets, complement A093971. %Y A365321 A179822 and A326080 count sum-closed subsets. %Y A365321 A326083 and A124506 count combination-free subsets. %Y A365321 A364350 counts combination-free strict partitions. %Y A365321 A364914 and A365046 count combination-full subsets. %Y A365321 Cf. A070880, A088571, A088809, A151897, A326020, A365043, A365073, A365311, A365312, A365378, A365380. %K A365321 nonn %O A365321 0,4 %A A365321 _Gus Wiseman_, Sep 06 2023