This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365323 #16 Dec 30 2023 17:01:08 %S A365323 0,0,1,1,4,3,9,7,15,16,29,23,47,43,74,65,114,100,174,153,257,228,368, %T A365323 312,530,454,736,645,1025,902,1402,1184,1909,1626,2618,2184,3412,2895, %U A365323 4551,3887,5966,5055,7796,6509,10244,8462,13060,10881,16834,14021,21471 %N A365323 Number of integer partitions with sum < n whose distinct parts cannot be linearly combined using all positive coefficients to obtain n. %H A365323 Chai Wah Wu, <a href="/A365323/b365323.txt">Table of n, a(n) for n = 1..95</a> %e A365323 The partition y = (3,3,2) has distinct parts {2,3}, and we have 9 = 3*2 + 1*3, so y is not counted under a(9). %e A365323 The a(3) = 1 through a(10) = 16 partitions: %e A365323 (2) (3) (2) (4) (2) (3) (2) (3) %e A365323 (3) (5) (3) (5) (4) (4) %e A365323 (4) (3,2) (4) (6) (5) (6) %e A365323 (2,2) (5) (7) (6) (7) %e A365323 (6) (3,3) (7) (8) %e A365323 (2,2) (4,3) (8) (9) %e A365323 (3,3) (5,2) (2,2) (3,3) %e A365323 (4,2) (4,2) (4,4) %e A365323 (2,2,2) (4,3) (5,2) %e A365323 (4,4) (5,3) %e A365323 (5,3) (5,4) %e A365323 (6,2) (6,3) %e A365323 (2,2,2) (7,2) %e A365323 (4,2,2) (3,3,3) %e A365323 (2,2,2,2) (4,3,2) %e A365323 (5,2,2) %t A365323 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365323 Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],combp[n,Union[#]]=={}&]],{n,10}] %o A365323 (Python) %o A365323 from sympy.utilities.iterables import partitions %o A365323 def A365323(n): %o A365323 a = {tuple(sorted(set(p))) for p in partitions(n)} %o A365323 return sum(1 for k in range(1,n) for d in partitions(k) if tuple(sorted(set(d))) not in a) # _Chai Wah Wu_, Sep 12 2023 %Y A365323 Complement for subsets: A088314 or A365042, nonnegative A365073 or A365542. %Y A365323 For strict partitions we have A088528, nonnegative coefficients A365312. %Y A365323 For length-2 subsets we have A365321 (we use n instead of n-1). %Y A365323 For subsets we have A365322 or A365045, nonnegative coefficients A365380. %Y A365323 For nonnegative coefficients we have A365378, complement A365379. %Y A365323 A000041 counts integer partitions, strict A000009. %Y A365323 A008284 counts partitions by length, strict A008289. %Y A365323 A116861 and A364916 count linear combinations of strict partitions. %Y A365323 A364350 counts combination-free strict partitions, non-strict A364915. %Y A365323 A364839 counts combination-full strict partitions, non-strict A364913. %Y A365323 Cf. A237668, A363225, A364272, A364345, A364914, A365320, A365382. %K A365323 nonn %O A365323 1,5 %A A365323 _Gus Wiseman_, Sep 12 2023 %E A365323 a(21)-a(51) from _Chai Wah Wu_, Sep 12 2023