cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365325 Triangular array read by rows. T(n,k) is the number of labeled digraphs (with self loops allowed) on [n] containing exactly k primitive components, n>=0, 0<=k<=n.

This page as a plain text file.
%I A365325 #14 Oct 22 2023 16:52:54
%S A365325 1,1,1,4,9,3,51,298,138,25,1831,40815,17853,4494,543,166930,23752151,
%T A365325 7418420,1861755,325895,29281,36681301,55427713806,10701675348,
%U A365325 2105585760,391017795,53021223,3781503
%N A365325 Triangular array read by rows.  T(n,k) is the number of labeled digraphs (with self loops allowed) on [n] containing exactly k primitive components, n>=0, 0<=k<=n.
%C A365325 A primitive component (A070322) is a strongly connected component (A003030) such that the gcd of the lengths of its cycles is 1.
%H A365325 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%F A365325 Sum_{n>=0} T(n,k)*y^k*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(-(y*p(x)-1)+ s(2x) - (p(x)-1))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)), p(x) is the e.g.f. for A070322, s(x) is the e.g.f. for A003030 and @ is the exponential Hadamard product (see Panafieu and Dovgal).
%e A365325 Triangle begins
%e A365325    1;
%e A365325    1,     1;
%e A365325    4,     9,     3;
%e A365325   51,   298,   138,   25;
%e A365325 1831, 40815, 17853, 4494, 543;
%e A365325 ...
%t A365325 nn = 6; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; primitive =
%t A365325  Select[Import["https://oeis.org/A070322/b070322.txt", "Table"],
%t A365325    Length@# == 2 &][[All, 2]]; pr[x_] := Total[primitive Table[x^i/i!, {i, 0, 6}]];ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i ->x^i/2^Binomial[i, 2], {i, 0, nn}];
%t A365325 Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[- (y (pr[x] - 1) + s[2 x] - (pr[x] - 1))]], {x,
%t A365325       0, nn}], {x, y}]] // Grid
%Y A365325 Cf. A002416 (row sums), A003024 (main diagonal), A070322, A003030, A361269.
%K A365325 nonn,tabl
%O A365325 0,4
%A A365325 _Geoffrey Critzer_, Oct 22 2023