cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365327 Triangle read by rows: T(n,k) is the number of spanning subgraphs of the n-cycle graph with domination number k.

This page as a plain text file.
%I A365327 #33 Jul 20 2024 09:02:31
%S A365327 2,3,1,4,3,1,0,11,4,1,0,11,15,5,1,0,10,26,21,6,1,0,0,43,49,28,7,1,0,0,
%T A365327 33,98,80,36,8,1,0,0,22,126,189,120,45,9,1,0,0,0,141,322,325,170,55,
%U A365327 10,1,0,0,0,89,462,671,517,231,66,11,1,0,0,0,46,480,1162,1236,777,304,78,12,1,0,0,0,0,417,1586,2483,2093,1118,390,91,13,1
%N A365327 Triangle read by rows: T(n,k) is the number of spanning subgraphs of the n-cycle graph with domination number k.
%C A365327 For n >= 3 the n-cycle graph is a simple graph. In the case of n=1 the graph is a loop and for n=2 a double edge.
%C A365327 The number of spanning subgraphs of the n-cycle graph is given by 2^n which is also the sum of the n-th row Sum_{k=1..n} T(n,k).
%C A365327 The average domination number is given by (Sum_{k=1..n} k*T(n,k))/2^n.
%C A365327 The relative average domination number is given by ((Sum_{k=1..n} k*T(n,k))/2^n)/n.
%H A365327 Roman Hros, <a href="/A365327/b365327.txt">Table of n, a(n) for n = 1..253 (Rows n = 1..22)</a>
%H A365327 Roman Hros, <a href="http://www2.fiit.stuba.sk/iitsrc/iit-src2020-proceedings.pdf#page=66">Effective Enumeration of Selected Graph Characteristics</a>, IIT.SRC 2020: 16th Student Research Conference in Informatics and Information Technologies.
%F A365327 T(n,n) = 1 for n > 1.
%F A365327 T(n,n-1) = T(n-1, n-2) + 1 for n > 3.
%F A365327 T(n,n-2) = T(n-1, n-3) + T(n, n-1) for n > 5.
%F A365327 T(n,n-3) = T(n-1, n-4) + T(n, n-2) - 5 for n > 6.
%F A365327 T(n,n-4) = T(n-1, n-5) + T(n-1, n-4) + 11 + Sum_{i=1..n-9} (i+4) for n > 8.
%F A365327 G.f.:
%F A365327 For n > 3; G(n) = x*(G(n-1) + G(n-2) + 2*G(n-3)) + g(n); where
%F A365327          2*(1-x)*x^(n/3)   for n mod 3 = 0.
%F A365327 g(n) = { 0                 for n mod 3 = 1.
%F A365327          (1-x)*x^((n+1)/3) for n mod 3 = 2.
%F A365327 For n mod 3 = 0:
%F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 2 for k =  n/3.
%F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 2 for k =  n/3 + 1.
%F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1)     for k >= n/3 + 2.
%F A365327 For n mod 3 = 1:
%F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1)     for k >= (n+2)/3.
%F A365327 For n mod 3 = 2:
%F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 1 for k =  (n+1)/3.
%F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 1 for k =  (n+1)/3 + 1.
%F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1)     for k >= (n+1)/3 + 2.
%e A365327 Example of spanning subgraphs of cycle with 2 vertices:
%e A365327 Domination number: 2      1      1      1
%e A365327                           /\            /\
%e A365327                   .  .   .  .   .  .   .  .
%e A365327                                  \/     \/
%e A365327 The triangle T(n,k) begins:
%e A365327 n\k 1   2   3    4    5     6     7    8    9  10  11  12 ...
%e A365327 1:  2
%e A365327 2:  3   1
%e A365327 3:  4   3   1
%e A365327 4:  0  11   4    1
%e A365327 5:  0  11  15    5    1
%e A365327 6:  0  10  26   21    6     1
%e A365327 7:  0   0  43   49   28     7     1
%e A365327 8:  0   0  33   98   80    36     8    1
%e A365327 9:  0   0  22  126  189   120    45    9    1
%e A365327 10: 0   0   0  141  322   325   170   55   10   1
%e A365327 11: 0   0   0   89  462   671   517  231   66  11   1
%e A365327 12: 0   0   0   46  480  1162  1236  777  304  78  12   1
%Y A365327 Row sums are A000079.
%Y A365327 Column sums are A002063(k-1).
%Y A365327 Cf. A373436.
%K A365327 nonn,tabl
%O A365327 1,1
%A A365327 _Roman Hros_, Sep 01 2023