This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365327 #33 Jul 20 2024 09:02:31 %S A365327 2,3,1,4,3,1,0,11,4,1,0,11,15,5,1,0,10,26,21,6,1,0,0,43,49,28,7,1,0,0, %T A365327 33,98,80,36,8,1,0,0,22,126,189,120,45,9,1,0,0,0,141,322,325,170,55, %U A365327 10,1,0,0,0,89,462,671,517,231,66,11,1,0,0,0,46,480,1162,1236,777,304,78,12,1,0,0,0,0,417,1586,2483,2093,1118,390,91,13,1 %N A365327 Triangle read by rows: T(n,k) is the number of spanning subgraphs of the n-cycle graph with domination number k. %C A365327 For n >= 3 the n-cycle graph is a simple graph. In the case of n=1 the graph is a loop and for n=2 a double edge. %C A365327 The number of spanning subgraphs of the n-cycle graph is given by 2^n which is also the sum of the n-th row Sum_{k=1..n} T(n,k). %C A365327 The average domination number is given by (Sum_{k=1..n} k*T(n,k))/2^n. %C A365327 The relative average domination number is given by ((Sum_{k=1..n} k*T(n,k))/2^n)/n. %H A365327 Roman Hros, <a href="/A365327/b365327.txt">Table of n, a(n) for n = 1..253 (Rows n = 1..22)</a> %H A365327 Roman Hros, <a href="http://www2.fiit.stuba.sk/iitsrc/iit-src2020-proceedings.pdf#page=66">Effective Enumeration of Selected Graph Characteristics</a>, IIT.SRC 2020: 16th Student Research Conference in Informatics and Information Technologies. %F A365327 T(n,n) = 1 for n > 1. %F A365327 T(n,n-1) = T(n-1, n-2) + 1 for n > 3. %F A365327 T(n,n-2) = T(n-1, n-3) + T(n, n-1) for n > 5. %F A365327 T(n,n-3) = T(n-1, n-4) + T(n, n-2) - 5 for n > 6. %F A365327 T(n,n-4) = T(n-1, n-5) + T(n-1, n-4) + 11 + Sum_{i=1..n-9} (i+4) for n > 8. %F A365327 G.f.: %F A365327 For n > 3; G(n) = x*(G(n-1) + G(n-2) + 2*G(n-3)) + g(n); where %F A365327 2*(1-x)*x^(n/3) for n mod 3 = 0. %F A365327 g(n) = { 0 for n mod 3 = 1. %F A365327 (1-x)*x^((n+1)/3) for n mod 3 = 2. %F A365327 For n mod 3 = 0: %F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 2 for k = n/3. %F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 2 for k = n/3 + 1. %F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= n/3 + 2. %F A365327 For n mod 3 = 1: %F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= (n+2)/3. %F A365327 For n mod 3 = 2: %F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 1 for k = (n+1)/3. %F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 1 for k = (n+1)/3 + 1. %F A365327 T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= (n+1)/3 + 2. %e A365327 Example of spanning subgraphs of cycle with 2 vertices: %e A365327 Domination number: 2 1 1 1 %e A365327 /\ /\ %e A365327 . . . . . . . . %e A365327 \/ \/ %e A365327 The triangle T(n,k) begins: %e A365327 n\k 1 2 3 4 5 6 7 8 9 10 11 12 ... %e A365327 1: 2 %e A365327 2: 3 1 %e A365327 3: 4 3 1 %e A365327 4: 0 11 4 1 %e A365327 5: 0 11 15 5 1 %e A365327 6: 0 10 26 21 6 1 %e A365327 7: 0 0 43 49 28 7 1 %e A365327 8: 0 0 33 98 80 36 8 1 %e A365327 9: 0 0 22 126 189 120 45 9 1 %e A365327 10: 0 0 0 141 322 325 170 55 10 1 %e A365327 11: 0 0 0 89 462 671 517 231 66 11 1 %e A365327 12: 0 0 0 46 480 1162 1236 777 304 78 12 1 %Y A365327 Row sums are A000079. %Y A365327 Column sums are A002063(k-1). %Y A365327 Cf. A373436. %K A365327 nonn,tabl %O A365327 1,1 %A A365327 _Roman Hros_, Sep 01 2023