This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365331 #16 Sep 02 2023 08:18:38 %S A365331 1,1,1,3,1,1,1,3,3,1,1,3,1,1,1,5,1,3,1,3,1,1,1,3,3,1,3,3,1,1,1,5,1,1, %T A365331 1,9,1,1,1,3,1,1,1,3,3,1,1,5,3,3,1,3,1,3,1,3,1,1,1,3,1,1,3,7,1,1,1,3, %U A365331 1,1,1,9,1,1,3,3,1,1,1,5,5,1,1,3,1,1,1 %N A365331 The number of divisors of the largest square dividing n. %C A365331 All the terms are odd. %C A365331 The sum of these divisors is A365332(n). %C A365331 The number of divisors of the square root of the largest square dividing n is A046951(n). %H A365331 Amiram Eldar, <a href="/A365331/b365331.txt">Table of n, a(n) for n = 1..10000</a> %F A365331 a(n) = A000005(A008833(n)). %F A365331 a(n) = 1 if and only if n is squarefree (A005117). %F A365331 Multiplicative with a(p^e) = e + 1 - (e mod 2). %F A365331 Dirichlet g.f.: zeta(s)*zeta(2*s)^2/zeta(4*s). %F A365331 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2. %F A365331 More precise asymptotics: Sum_{k=1..n} a(k) ~ 5*n/2 + 3*zeta(1/2)*sqrt(n)/Pi^2 * (log(n) + 4*gamma - 2 - 24*zeta'(2)/Pi^2 + zeta'(1/2)/zeta(1/2)), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Sep 02 2023 %p A365331 a:= n-> mul(2*iquo(i[2], 2)+1, i=ifactors(n)[2]): %p A365331 seq(a(n), n=1..100); # _Alois P. Heinz_, Sep 01 2023 %t A365331 f[p_, e_] := e + 1 - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A365331 (PARI) a(n) = vecprod(apply(x -> x + 1 - x%2, factor(n)[, 2])); %o A365331 (PARI) a(n) = numdiv(n/core(n)); \\ _Michel Marcus_, Sep 02 2023 %Y A365331 Cf. A000005, A005117, A008833, A046951, A365332. %K A365331 nonn,easy,mult %O A365331 1,4 %A A365331 _Amiram Eldar_, Sep 01 2023