cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365331 The number of divisors of the largest square dividing n.

This page as a plain text file.
%I A365331 #16 Sep 02 2023 08:18:38
%S A365331 1,1,1,3,1,1,1,3,3,1,1,3,1,1,1,5,1,3,1,3,1,1,1,3,3,1,3,3,1,1,1,5,1,1,
%T A365331 1,9,1,1,1,3,1,1,1,3,3,1,1,5,3,3,1,3,1,3,1,3,1,1,1,3,1,1,3,7,1,1,1,3,
%U A365331 1,1,1,9,1,1,3,3,1,1,1,5,5,1,1,3,1,1,1
%N A365331 The number of divisors of the largest square dividing n.
%C A365331 All the terms are odd.
%C A365331 The sum of these divisors is A365332(n).
%C A365331 The number of divisors of the square root of the largest square dividing n is A046951(n).
%H A365331 Amiram Eldar, <a href="/A365331/b365331.txt">Table of n, a(n) for n = 1..10000</a>
%F A365331 a(n) = A000005(A008833(n)).
%F A365331 a(n) = 1 if and only if n is squarefree (A005117).
%F A365331 Multiplicative with a(p^e) = e + 1 - (e mod 2).
%F A365331 Dirichlet g.f.: zeta(s)*zeta(2*s)^2/zeta(4*s).
%F A365331 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2.
%F A365331 More precise asymptotics: Sum_{k=1..n} a(k) ~ 5*n/2 + 3*zeta(1/2)*sqrt(n)/Pi^2 * (log(n) + 4*gamma - 2  - 24*zeta'(2)/Pi^2 + zeta'(1/2)/zeta(1/2)), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Sep 02 2023
%p A365331 a:= n-> mul(2*iquo(i[2], 2)+1, i=ifactors(n)[2]):
%p A365331 seq(a(n), n=1..100);  # _Alois P. Heinz_, Sep 01 2023
%t A365331 f[p_, e_] := e + 1 - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365331 (PARI) a(n) = vecprod(apply(x -> x + 1 - x%2, factor(n)[, 2]));
%o A365331 (PARI) a(n) = numdiv(n/core(n)); \\ _Michel Marcus_, Sep 02 2023
%Y A365331 Cf. A000005, A005117, A008833, A046951, A365332.
%K A365331 nonn,easy,mult
%O A365331 1,4
%A A365331 _Amiram Eldar_, Sep 01 2023