cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365332 The sum of divisors of the largest square dividing n.

This page as a plain text file.
%I A365332 #8 Sep 02 2023 03:16:12
%S A365332 1,1,1,7,1,1,1,7,13,1,1,7,1,1,1,31,1,13,1,7,1,1,1,7,31,1,13,7,1,1,1,
%T A365332 31,1,1,1,91,1,1,1,7,1,1,1,7,13,1,1,31,57,31,1,7,1,13,1,7,1,1,1,7,1,1,
%U A365332 13,127,1,1,1,7,1,1,1,91,1,1,31,7,1,1,1,31,121
%N A365332 The sum of divisors of the largest square dividing n.
%C A365332 All the terms are odd.
%C A365332 The number of these divisors is A365331(n).
%C A365332 The sum of divisors of the square root of the largest square dividing n is A069290(n).
%H A365332 Amiram Eldar, <a href="/A365332/b365332.txt">Table of n, a(n) for n = 1..10000</a>
%F A365332 a(n) = A000203(A008833(n)).
%F A365332 a(n) = 1 if and only if n is squarefree (A005117).
%F A365332 Multiplicative with a(p^e) = (p^(e + 1 - (e mod 2)) - 1)/(p - 1).
%F A365332 Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(2*s-2) / zeta(4*s-2).
%F A365332 Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = 5*zeta(3/2)/Pi^2 = 1.323444812234... .
%t A365332 f[p_, e_] := (p^(e + 1 - Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365332 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 1 - f[i,2]%2) - 1)/(f[i,1] - 1));}
%Y A365332 Cf. A000203, A005117, A008833, A069290, A078434, A365331.
%K A365332 nonn,easy,mult
%O A365332 1,4
%A A365332 _Amiram Eldar_, Sep 01 2023