This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365333 #15 Sep 11 2023 07:38:37 %S A365333 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1, %T A365333 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1, %U A365333 1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1 %N A365333 The number of exponentially odd coreful divisors of the largest square dividing n. %C A365333 First differs from A043289, A053164, A063775, A203640 and A295658 at n = 64. %C A365333 The number of squares dividing the largest exponentially odd divisor of n is A325837(n). %C A365333 The sum of the exponentially odd divisors of the largest square dividing n is A365334(n). [corrected, Sep 08 2023] %C A365333 The number of exponentially odd divisors of the largest square dividing n is the same as the number of squares dividing n, A046951(n). - _Amiram Eldar_, Sep 08 2023 %H A365333 Amiram Eldar, <a href="/A365333/b365333.txt">Table of n, a(n) for n = 1..10000</a> %F A365333 a(n) = A325837(A008833(n)). %F A365333 a(n) = 1 if and only if n is a biquadratefree number (A046100). %F A365333 Multiplicative with a(p^e) = max(1, floor(e/2)). %F A365333 Dirichlet g.f.: zeta(s) * zeta(4*s) * zeta(6*s) / zeta(12*s). %F A365333 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 15015/(1382*Pi^2) = 1.100823... . %t A365333 f[p_, e_] := Max[1, Floor[e/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A365333 (PARI) a(n) = vecprod(apply(x -> max(1, x\2), factor(n)[, 2])); %Y A365333 Cf. A008833, A046100, A046951, A325837, A365334. %Y A365333 Cf. A043289, A053164, A063775, A203640, A295658. %K A365333 nonn,easy,mult %O A365333 1,16 %A A365333 _Amiram Eldar_, Sep 01 2023 %E A365333 Name corrected by _Amiram Eldar_, Sep 08 2023