cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365334 The sum of exponentially odd divisors of the largest square dividing n.

This page as a plain text file.
%I A365334 #8 Sep 02 2023 04:32:11
%S A365334 1,1,1,3,1,1,1,3,4,1,1,3,1,1,1,11,1,4,1,3,1,1,1,3,6,1,4,3,1,1,1,11,1,
%T A365334 1,1,12,1,1,1,3,1,1,1,3,4,1,1,11,8,6,1,3,1,4,1,3,1,1,1,3,1,1,4,43,1,1,
%U A365334 1,3,1,1,1,12,1,1,6,3,1,1,1,11,31,1,1,3,1
%N A365334 The sum of exponentially odd divisors of the largest square dividing n.
%C A365334 The number of these divisors is A365333(n).
%H A365334 Amiram Eldar, <a href="/A365334/b365334.txt">Table of n, a(n) for n = 1..10000</a>
%F A365334 a(n) = A033634(A008833(n)).
%F A365334 a(n) = 1 if and only if n is squarefree (A005117).
%F A365334 Multiplicative with a(p^e) = 1 + (p^(e + 1 - (e mod 2)) - 1)/(p^2 - 1).
%F A365334 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 - 1/p^(2*s-2) + 1/p^(2*s-1)).
%t A365334 f[p_, e_] := (p^(e + 1 - Mod[e, 2]) - p)/(p^2 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365334 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 1 - f[i,2]%2) - f[i,1])/(f[i,1]^2 - 1) + 1);}
%Y A365334 Cf. A008833, A005117, A033634, A365333.
%K A365334 nonn,easy,mult
%O A365334 1,4
%A A365334 _Amiram Eldar_, Sep 01 2023