This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365334 #8 Sep 02 2023 04:32:11 %S A365334 1,1,1,3,1,1,1,3,4,1,1,3,1,1,1,11,1,4,1,3,1,1,1,3,6,1,4,3,1,1,1,11,1, %T A365334 1,1,12,1,1,1,3,1,1,1,3,4,1,1,11,8,6,1,3,1,4,1,3,1,1,1,3,1,1,4,43,1,1, %U A365334 1,3,1,1,1,12,1,1,6,3,1,1,1,11,31,1,1,3,1 %N A365334 The sum of exponentially odd divisors of the largest square dividing n. %C A365334 The number of these divisors is A365333(n). %H A365334 Amiram Eldar, <a href="/A365334/b365334.txt">Table of n, a(n) for n = 1..10000</a> %F A365334 a(n) = A033634(A008833(n)). %F A365334 a(n) = 1 if and only if n is squarefree (A005117). %F A365334 Multiplicative with a(p^e) = 1 + (p^(e + 1 - (e mod 2)) - 1)/(p^2 - 1). %F A365334 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 - 1/p^(2*s-2) + 1/p^(2*s-1)). %t A365334 f[p_, e_] := (p^(e + 1 - Mod[e, 2]) - p)/(p^2 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A365334 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 1 - f[i,2]%2) - f[i,1])/(f[i,1]^2 - 1) + 1);} %Y A365334 Cf. A008833, A005117, A033634, A365333. %K A365334 nonn,easy,mult %O A365334 1,4 %A A365334 _Amiram Eldar_, Sep 01 2023