cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365335 The number of exponentially odd coreful divisors of the square root of the largest square dividing n.

This page as a plain text file.
%I A365335 #14 Sep 11 2023 07:38:19
%S A365335 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T A365335 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,
%U A365335 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A365335 The number of exponentially odd coreful divisors of the square root of the largest square dividing n.
%C A365335 First differs from A160338 at n = 64, and from A178489 at n = 65.
%C A365335 The number of divisors of the square root of the largest square dividing n is A046951(n).
%C A365335 The number of exponentially odd divisors of the square root of the largest square dividing n is A365549(n) and their sum is A365336(n). [corrected, Sep 08 2023]
%H A365335 Amiram Eldar, <a href="/A365335/b365335.txt">Table of n, a(n) for n = 1..10000</a>
%F A365335 a(n) = A325837(A000188(n)).
%F A365335 a(n) > 1 if and only if n is a bicubeful number (A355265).
%F A365335 Multiplicative with a(p^e) = floor((e+2)/4).
%F A365335 Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 - 1/p^(4*s) + 1/p^(6*s)).
%F A365335 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.0181534831085... .
%t A365335 f[p_, e_] := Max[1, Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365335 (PARI) a(n) = vecprod(apply(x -> max(1, (x+2)\4), factor(n)[, 2]));
%Y A365335 Cf. A000188, A046951, A325837, A355265, A365336, A365549.
%Y A365335 Cf. A160338, A178489.
%K A365335 nonn,easy,mult
%O A365335 1,64
%A A365335 _Amiram Eldar_, Sep 01 2023
%E A365335 Name corrected by _Amiram Eldar_, Sep 08 2023