This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365335 #14 Sep 11 2023 07:38:19 %S A365335 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A365335 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1, %U A365335 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A365335 The number of exponentially odd coreful divisors of the square root of the largest square dividing n. %C A365335 First differs from A160338 at n = 64, and from A178489 at n = 65. %C A365335 The number of divisors of the square root of the largest square dividing n is A046951(n). %C A365335 The number of exponentially odd divisors of the square root of the largest square dividing n is A365549(n) and their sum is A365336(n). [corrected, Sep 08 2023] %H A365335 Amiram Eldar, <a href="/A365335/b365335.txt">Table of n, a(n) for n = 1..10000</a> %F A365335 a(n) = A325837(A000188(n)). %F A365335 a(n) > 1 if and only if n is a bicubeful number (A355265). %F A365335 Multiplicative with a(p^e) = floor((e+2)/4). %F A365335 Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 - 1/p^(4*s) + 1/p^(6*s)). %F A365335 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.0181534831085... . %t A365335 f[p_, e_] := Max[1, Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A365335 (PARI) a(n) = vecprod(apply(x -> max(1, (x+2)\4), factor(n)[, 2])); %Y A365335 Cf. A000188, A046951, A325837, A355265, A365336, A365549. %Y A365335 Cf. A160338, A178489. %K A365335 nonn,easy,mult %O A365335 1,64 %A A365335 _Amiram Eldar_, Sep 01 2023 %E A365335 Name corrected by _Amiram Eldar_, Sep 08 2023