cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365336 The sum of exponentially odd divisors of the square root of the largest square dividing n.

This page as a plain text file.
%I A365336 #22 Oct 08 2023 09:05:42
%S A365336 1,1,1,3,1,1,1,3,4,1,1,3,1,1,1,3,1,4,1,3,1,1,1,3,6,1,4,3,1,1,1,3,1,1,
%T A365336 1,12,1,1,1,3,1,1,1,3,4,1,1,3,8,6,1,3,1,4,1,3,1,1,1,3,1,1,4,11,1,1,1,
%U A365336 3,1,1,1,12,1,1,6,3,1,1,1,3,4,1,1,3,1,1
%N A365336 The sum of exponentially odd divisors of the square root of the largest square dividing n.
%C A365336 First differs from A295295 at n = 64.
%C A365336 The sum of divisors of the square root of the largest square dividing n is A069290(n).
%C A365336 The number of these divisors is A365335(n).
%H A365336 Amiram Eldar, <a href="/A365336/b365336.txt">Table of n, a(n) for n = 1..10000</a>
%H A365336 Vaclav Kotesovec, <a href="/A365336/a365336_1.jpg">Graph - the asymptotic ratio (1000000 terms)</a>
%F A365336 a(n) = A033634(A000188(n)).
%F A365336 a(n) = 1 if and only if n is squarefree (A005117).
%F A365336 Multiplicative with a(p^e) = (p^(2*floor((e+2)/4) + 1) - p)/(p^2 - 1) + 1. [corrected by _Georg Fischer_, Oct 07 2023]
%F A365336 Dirichlet g.f.: zeta(s) * zeta(4*s-2) * Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(4*s-2)).
%F A365336 From _Vaclav Kotesovec_, Sep 02 2023: (Start)
%F A365336 Dirichlet g.f.: zeta(s)^2 * zeta(4*s-2) * Product_{p prime} (1 - 1/p^s + 1/p^(2*s-1) - 1/p^(3*s-1) - 1/p^(4*s-2) + 1/p^(5*s-2)).
%F A365336 Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(4*s-2) * Product_{p prime} (1 - 2/p^(4*s-2) + 1/p^(6*s-3)).
%F A365336 Let f(s) = Product_{p prime} (1 - 2/p^(4*s-2) + 1/p^(6*s-3)), then Sum_{k=1..n} a(k) ~ Pi^2/12 * n * (f(1) * (log(n) + 3*gamma - 1 + 24*zeta'(2)/Pi^2) + f'(1)), where f(1) = Product_{p prime} (1 - 2/p^2 + 1/p^3) = A065464 = 0.42824950567709444021876..., f'(1) = f(1) * Sum_{primes p} 2*(4*p-3)*log(p) /  (p^3 - 2*p + 1) = 1.617322217899181826790... and gamma is the Euler-Mascheroni constant A001620. (End)
%t A365336 f[p_, e_] := (p^(2*Floor[(e+2)/4] + 1) - p)/(p^2 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365336 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(2*((f[i,2]+2)\4) + 1) - f[i,1])/(f[i,1]^2 - 1) + 1);}
%Y A365336 Cf. A000188, A005117, A033634, A069290, A295295, A365335.
%K A365336 nonn,easy,mult
%O A365336 1,4
%A A365336 _Amiram Eldar_, Sep 01 2023