cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365337 The sum of divisors of the largest exponentially odd number dividing n.

This page as a plain text file.
%I A365337 #8 Sep 02 2023 04:09:56
%S A365337 1,3,4,3,6,12,8,15,4,18,12,12,14,24,24,15,18,12,20,18,32,36,24,60,6,
%T A365337 42,40,24,30,72,32,63,48,54,48,12,38,60,56,90,42,96,44,36,24,72,48,60,
%U A365337 8,18,72,42,54,120,72,120,80,90,60,72,62,96,32,63,84,144,68
%N A365337 The sum of divisors of the largest exponentially odd number dividing n.
%C A365337 The number of divisors of the largest exponentially odd number dividing n is A286324(n).
%H A365337 Amiram Eldar, <a href="/A365337/b365337.txt">Table of n, a(n) for n = 1..10000</a>
%F A365337 a(n) = A000203(A350390(n)).
%F A365337 Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd and (p^e-1)/(p-1) if e is even.
%F A365337 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) + 1/p^(3*s-2)).
%F A365337 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.2312911488886... (A065487). - _Amiram Eldar_, Sep 01 2023
%t A365337 f[p_, e_] := (p^(e + Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365337 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + f[i,2]%2) - 1)/(f[i,1] - 1));}
%Y A365337 Cf. A000203, A065487, A286324, A350390.
%K A365337 nonn,easy,mult
%O A365337 1,2
%A A365337 _Amiram Eldar_, Sep 01 2023