This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365341 #22 Aug 31 2024 08:31:00 %S A365341 1,1,10,210,6840,303600,17100720,1168675200,93963542400,8691104822400, %T A365341 909171781056000,106137499051584000,13679492361575040000, %U A365341 1929327666754295808000,295570742023171270656000,48877281133334949335040000,8677556868736487617966080000 %N A365341 a(n) = (5*n)!/(4*n+1)!. %F A365341 E.g.f.: exp( 1/5 * Sum_{k>=1} binomial(5*k,k) * x^k/k ). - _Seiichi Manyama_, Feb 08 2024 %F A365341 a(n) = A000142(n)*A002294(n). - _Alois P. Heinz_, Feb 08 2024 %F A365341 From _Seiichi Manyama_, Aug 31 2024: (Start) %F A365341 E.g.f. satisfies A(x) = 1/(1 - x*A(x)^4). %F A365341 a(n) = Sum_{k=0..n} (4*n+1)^(k-1) * |Stirling1(n,k)|. (End) %o A365341 (PARI) a(n) = (5*n)!/(4*n+1)!; %o A365341 (Python) %o A365341 from sympy import ff %o A365341 def A365341(n): return ff(5*n,n-1) # _Chai Wah Wu_, Sep 01 2023 %Y A365341 Cf. A001761, A001763, A052795, A365340. %Y A365341 Cf. A004343. %Y A365341 Cf. A000142, A002294. %K A365341 nonn,easy %O A365341 0,3 %A A365341 _Seiichi Manyama_, Sep 01 2023