cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365345 The number of divisors of the smallest square divisible by n.

This page as a plain text file.
%I A365345 #15 Apr 20 2025 08:52:27
%S A365345 1,3,3,3,3,9,3,5,3,9,3,9,3,9,9,5,3,9,3,9,9,9,3,15,3,9,5,9,3,27,3,7,9,
%T A365345 9,9,9,3,9,9,15,3,27,3,9,9,9,3,15,3,9,9,9,3,15,9,15,9,9,3,27,3,9,9,7,
%U A365345 9,27,3,9,9,27,3,15,3,9,9,9,9,27,3,15,5,9,3
%N A365345 The number of divisors of the smallest square divisible by n.
%C A365345 The sum of these divisors is A365346(n).
%C A365345 The number of divisors of the square root of the smallest square divisible by n is A322483(n).
%H A365345 Amiram Eldar, <a href="/A365345/b365345.txt">Table of n, a(n) for n = 1..10000</a>
%H A365345 Vaclav Kotesovec, <a href="/A365345/a365345.jpg">Graph - the asymptotic ratio (100000 terms)</a>
%F A365345 a(n) = A000005(A053143(n)).
%F A365345 Multiplicative with a(p^e) = e + 1 + (e mod 2).
%F A365345 Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 2/p^s - 1/p^(2*s)).
%F A365345 From _Vaclav Kotesovec_, Sep 05 2023: (Start)
%F A365345 Dirichlet g.f.: zeta(s)^3 * zeta(2*s) * Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
%F A365345 Let f(s) = Product_{primes p} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
%F A365345 Sum_{k=1..n} a(k) ~ f(1) * Pi^2 * n / 6 * (log(n)^2/2 + (3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)) * log(n) + 1 - 3*gamma + 3*gamma^2 - 3*sg1 + (3*gamma - 1)*12*zeta'(2)/Pi^2 + 12*zeta''(2)/Pi^2 + (12*zeta'(2)/Pi^2 + 3*gamma - 1)*f'(1)/f(1) + f''(1)/(2*f(1))), where
%F A365345 f(1) = Product_{primes p} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
%F A365345 f'(1) = f(1) * Sum_{primes p} 4*(2*p - 1) * log(p) / (1 - 3*p + p^2 + p^3) = 0.7343690473711153863995729489689746152413988981744946512300478410459132782...
%F A365345 f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} 4*p*(-1 + 2*p + p^2 - 4*p^3) * log(p)^2 / (1 - 3*p + p^2 + p^3)^2 = 0.1829055032494906699795154632343894745397324334876662084674149254022564139...,
%F A365345 gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)
%t A365345 f[p_, e_] := e + 1 + Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365345 (PARI) a(n) = vecprod(apply(x -> x + 1 + x%2, factor(n)[, 2]));
%o A365345 (PARI) a(n) = numdiv(n*core(n)); \\ _Michel Marcus_, Sep 02 2023
%Y A365345 Cf. A000005, A053143, A322483, A365346, A365489, A365492.
%K A365345 nonn,easy,mult
%O A365345 1,2
%A A365345 _Amiram Eldar_, Sep 02 2023