cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365346 The sum of divisors of the smallest square divisible by n.

This page as a plain text file.
%I A365346 #10 Sep 02 2023 16:59:37
%S A365346 1,7,13,7,31,91,57,31,13,217,133,91,183,399,403,31,307,91,381,217,741,
%T A365346 931,553,403,31,1281,121,399,871,2821,993,127,1729,2149,1767,91,1407,
%U A365346 2667,2379,961,1723,5187,1893,931,403,3871,2257,403,57,217,3991,1281,2863
%N A365346 The sum of divisors of the smallest square divisible by n.
%C A365346 The number of these divisors is A365345(n).
%C A365346 The sum of divisors of the square root of the smallest square divisible by n is A365347(n).
%H A365346 Amiram Eldar, <a href="/A365346/b365346.txt">Table of n, a(n) for n = 1..10000</a>
%F A365346 a(n) = A000203(A053143(n)).
%F A365346 Multiplicative with a(p^e) = (p^(e + 1 + (e mod 2)) - 1)/(p - 1).
%F A365346 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-2) + 1/p^(s-1) - 1/p^(2*s-2)).
%F A365346 Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/45) * zeta(3) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 0.344306233314... .
%t A365346 f[p_, e_] := (p^(e + 1 + Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365346 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 1 + f[i,2]%2) - 1)/(f[i,1] - 1));}
%o A365346 (PARI) a(n) = sigma(n*core(n)); \\ _Michel Marcus_, Sep 02 2023
%Y A365346 Cf. A000203, A053143, A365345, A365347.
%K A365346 nonn,easy,mult
%O A365346 1,2
%A A365346 _Amiram Eldar_, Sep 02 2023