cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365348 The number of divisors of the smallest exponentially odd number divisible by n.

This page as a plain text file.
%I A365348 #10 Sep 05 2023 05:34:47
%S A365348 1,2,2,4,2,4,2,4,4,4,2,8,2,4,4,6,2,8,2,8,4,4,2,8,4,4,4,8,2,8,2,6,4,4,
%T A365348 4,16,2,4,4,8,2,8,2,8,8,4,2,12,4,8,4,8,2,8,4,8,4,4,2,16,2,4,8,8,4,8,2,
%U A365348 8,4,8,2,16,2,4,8,8,4,8,2,12,6,4,2,16,4
%N A365348 The number of divisors of the smallest exponentially odd number divisible by n.
%C A365348 The sum of these divisors is A365349(n).
%H A365348 Amiram Eldar, <a href="/A365348/b365348.txt">Table of n, a(n) for n = 1..10000</a>
%H A365348 Vaclav Kotesovec, <a href="/A365348/a365348.jpg">Graph - the asymptotic ratio (1000000 terms)</a>
%F A365348 a(n) = A000005(A356191(n)).
%F A365348 Multiplicative with a(p^e) = e + 2 - (e mod 2).
%F A365348 Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
%F A365348 From _Vaclav Kotesovec_, Sep 05 2023: (Start)
%F A365348 Let f(s) = Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
%F A365348 Sum_{k=1..n} a(k) ~ f(1) * Pi^2 * n / 6 * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
%F A365348 f(1) = Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.74469549790606742043912387159445432811796913290492411186307181370150975026...
%F A365348 f'(1) = f(1) * Sum_{p prime} 2*(3*p - 2) * log(p) / (1 - 2*p + p^4) = f(1) * 0.75575434641494973924789411019492794958528241212857430737760075121773728338...
%F A365348 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A365348 f[p_, e_] := e + 2 - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365348 (PARI) a(n) = vecprod(apply(x -> x + 2 - x%2, factor(n)[, 2]));
%Y A365348 Cf. A000005, A356191, A365349.
%K A365348 nonn,easy,mult
%O A365348 1,2
%A A365348 _Amiram Eldar_, Sep 02 2023