cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365349 The sum of divisors of the smallest exponentially odd number divisible by n.

This page as a plain text file.
%I A365349 #17 Sep 04 2023 11:50:25
%S A365349 1,3,4,15,6,12,8,15,40,18,12,60,14,24,24,63,18,120,20,90,32,36,24,60,
%T A365349 156,42,40,120,30,72,32,63,48,54,48,600,38,60,56,90,42,96,44,180,240,
%U A365349 72,48,252,400,468,72,210,54,120,72,120,80,90,60,360,62,96,320
%N A365349 The sum of divisors of the smallest exponentially odd number divisible by n.
%H A365349 Amiram Eldar, <a href="/A365349/b365349.txt">Table of n, a(n) for n = 1..10000</a>
%H A365349 Vaclav Kotesovec, <a href="/A365349/a365349_1.jpg">Graph - the asymptotic ratio (1000000 terms)</a>
%F A365349 a(n) = A000203(A356191(n)).
%F A365349 Multiplicative with a(p^e) = (p^(e + 2 - (e mod 2)) - 1)/(p - 1).
%F A365349 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-3) - 1/p^(3*s-3)).
%F A365349 From _Vaclav Kotesovec_, Sep 04 2023: (Start)
%F A365349 Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s-2) * zeta(2*s-3) * Product_{p prime} (1 - 1/p^(6*s-7) + 1/p^(5*s-6) + 1/p^(5*s-7) + 1/p^(4*s-4) + 1/p^(4*s-5) - 1/p^(4*s-6) - 1/p^(3*s-3) - 1/p^(3*s-4) - 1/p^(2*s-2)).
%F A365349 Let f(s) = Product_{p prime} (1 - 1/p^(6*s-7) + 1/p^(5*s-6) + 1/p^(5*s-7) + 1/p^(4*s-4) + 1/p^(4*s-5) - 1/p^(4*s-6) - 1/p^(3*s-3) - 1/p^(3*s-4) - 1/p^(2*s-2)), then
%F A365349 Sum_{k=1..n} a(k) ~ n^2 * Pi^4 * f(2) / 144 * (log(n) + 3*gamma - 1/2 + 18*zeta'(2)/Pi^2 + f'(2)/f(2)), where
%F A365349 f(2) = Product_{p prime} (1 - 1/p^2) * (1 - 2/p^2 + 1/p^3) = 6*A065464/Pi^2 = 0.26034448085669554670553581687050222309091096557569931376863612821007515...,
%F A365349 f'(2) = f(2) * Sum_{p prime} 3*(3*p-2) * log(p) / (p^3 - 2*p + 1) = f(2) * 4.40861022247384449961018198035049309399000439627743168713608947117149645... and gamma is the Euler-Mascheroni constant A001620. (End)
%t A365349 f[p_, e_] := (p^(e + 2 - Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365349 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 2 - f[i,2]%2) - 1)/(f[i,1] - 1));}
%o A365349 (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * 1/(1 - p^2*X^2) * (1 + p*X + p^3*X^2 - p^3*X^3) )[n], ", ")) \\ _Vaclav Kotesovec_, Sep 04 2023
%Y A365349 Cf. A000203, A356191, A365348.
%K A365349 nonn,easy,mult
%O A365349 1,2
%A A365349 _Amiram Eldar_, Sep 02 2023