This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365351 #39 Aug 17 2025 02:28:00 %S A365351 6,11,18,27,41,74,157,197,294,549,581 %N A365351 Exponents e such that the aliquot sequence starting with 2^e ends with a prime number at index 2. %C A365351 That is, exponents e such that s(s(2^e)) is prime, where s(n) = sigma(n)-n (A001065). %C A365351 Note that exponents e such that aliquot sequences starting with 2^e end with a prime number at index 1 (exponents e such that s(2^e) is prime) are called "Mersenne exponents" (see A000043). %C A365351 From _Amiram Eldar_, Sep 02 2023: (Start) %C A365351 Numbers k such that 2^k - 1 is a term of A037020. %C A365351 1206 < a(12) <= 2351 (2351 is a term). (End) %H A365351 Jean-Luc Garambois, <a href="http://www.aliquotes.com/aliquotes_puissances_entieres/aliquotes_puissances_entieres.html">Aliquot sequences starting on integer powers n^i</a>. %H A365351 Mersenne forum, <a href="https://www.mersenneforum.org/showpost.php?p=637222&postcount=2427">Results presentation page</a>. %t A365351 Select[Range[100], PrimeQ[DivisorSigma[1, 2^# - 1] - 2^# + 1] &] (* _Amiram Eldar_, Sep 02 2023 *) %o A365351 (Sage) %o A365351 def s(n): %o A365351 sn = sigma(n) - n %o A365351 return sn %o A365351 e = 1 %o A365351 exponents_list = [] %o A365351 while e<=200: %o A365351 m = 2^e %o A365351 index = 0 %o A365351 if is_prime(s(s(m))): %o A365351 exponents_list.append(e) %o A365351 e+=1 %o A365351 print (exponents_list) %o A365351 (PARI) f(n) = sigma(n) - n; \\ A001065 %o A365351 isok(k) = ispseudoprime(f(f(2^k))); \\ _Michel Marcus_, Sep 02 2023 %Y A365351 Cf. A000043 (Mersenne exponents), A001065, A037020. %K A365351 nonn,hard,more %O A365351 1,1 %A A365351 _Jean Luc Garambois_, Sep 02 2023