This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365366 #12 Nov 02 2023 14:19:24 %S A365366 1,4,30,835,43828 %N A365366 Number of free 4-dimensional polyhypercubes with n cells, allowing corner-, edge-, face-, and 3-face-connections. %H A365366 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %Y A365366 Connections | %Y A365366 (0 = corner, 1 = edge, | Polyhypercubes in dimension %Y A365366 2 = face, 3 = 3-face) | 2 3 4 %Y A365366 -----------------------+---------------------------- %Y A365366 0 | A000105* A038171 A365353 %Y A365366 1 | A000105 A038173 A365354 %Y A365366 01 | A030222 A363206 A365355 %Y A365366 2 | A038119 A365356 %Y A365366 0 2 | A363205 A365357 %Y A365366 12 | A268666 A365358 %Y A365366 012 | A272368 A365359 %Y A365366 3 | A068870 %Y A365366 0 3 | A365360 %Y A365366 1 3 | A365361 %Y A365366 01 3 | A365362 %Y A365366 23 | A365363 %Y A365366 0 23 | A365364 %Y A365366 123 | A365365 %Y A365366 0123 | A365366 %Y A365366 *There is a one-to-one correspondence between corner-connected and edge-connected 2-dimensional polyominoes, but see A364928. %Y A365366 154th row of A366766. %K A365366 nonn,hard,more %O A365366 1,2 %A A365366 _Pontus von Brömssen_, Sep 05 2023