cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365366 Number of free 4-dimensional polyhypercubes with n cells, allowing corner-, edge-, face-, and 3-face-connections.

This page as a plain text file.
%I A365366 #12 Nov 02 2023 14:19:24
%S A365366 1,4,30,835,43828
%N A365366 Number of free 4-dimensional polyhypercubes with n cells, allowing corner-, edge-, face-, and 3-face-connections.
%H A365366 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%Y A365366        Connections       |
%Y A365366   (0 = corner, 1 = edge, | Polyhypercubes in dimension
%Y A365366    2 = face, 3 = 3-face) |    2        3        4
%Y A365366   -----------------------+----------------------------
%Y A365366              0           | A000105* A038171  A365353
%Y A365366               1          | A000105  A038173  A365354
%Y A365366              01          | A030222  A363206  A365355
%Y A365366                2         |          A038119  A365356
%Y A365366              0 2         |          A363205  A365357
%Y A365366               12         |          A268666  A365358
%Y A365366              012         |          A272368  A365359
%Y A365366                 3        |                   A068870
%Y A365366              0  3        |                   A365360
%Y A365366               1 3        |                   A365361
%Y A365366              01 3        |                   A365362
%Y A365366                23        |                   A365363
%Y A365366              0 23        |                   A365364
%Y A365366               123        |                   A365365
%Y A365366              0123        |                   A365366
%Y A365366   *There is a one-to-one correspondence between corner-connected and edge-connected 2-dimensional polyominoes, but see A364928.
%Y A365366 154th row of A366766.
%K A365366 nonn,hard,more
%O A365366 1,2
%A A365366 _Pontus von Brömssen_, Sep 05 2023