This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365374 #47 Dec 11 2023 14:17:25 %S A365374 0,1,2,3,11,19,22,28,33,37,41,72,101,111,121,131,199,202,212,222,232, %T A365374 288,303,313,323,327,333,377,441,461,732,772,1001,1111,1191,1221,1281, %U A365374 1331,1371,1411,1721,1919,1999,2002,2112,2192,2222,2282,2332,2372,2412,2722,2828,2888 %N A365374 Numbers k such that squaring each digit and concatenating them forms a palindrome. %C A365374 The sequence is infinite since if k is a term then so is 1k1. %H A365374 Michael S. Branicky, <a href="/A365374/b365374.txt">Table of n, a(n) for n = 1..10000</a> %e A365374 k(6) = 19 becomes 181 as 1^2 = 1 and 9^2 = 81; %e A365374 k(7) = 22 becomes 44 as 2^2 = 4 and 2^2 = 4; %e A365374 k(8) = 28 becomes 464 as 2^2 = 4 and 8^2 = 64; etc. %t A365374 Select[Range[0,3000],PalindromeQ@FromDigits@Flatten[IntegerDigits/@(IntegerDigits@#^2)]&] %o A365374 (Python) %o A365374 def ok(n): return (s:="".join(str(int(d)**2) for d in str(n))) == s[::-1] %o A365374 print([k for k in range(3000) if ok(k)]) # _Michael S. Branicky_, Oct 05 2023 %Y A365374 Cf. A258373, A366198. %K A365374 base,nonn %O A365374 1,3 %A A365374 _Eric Angelini_ and _Giorgos Kalogeropoulos_, Oct 05 2023