cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365374 Numbers k such that squaring each digit and concatenating them forms a palindrome.

This page as a plain text file.
%I A365374 #47 Dec 11 2023 14:17:25
%S A365374 0,1,2,3,11,19,22,28,33,37,41,72,101,111,121,131,199,202,212,222,232,
%T A365374 288,303,313,323,327,333,377,441,461,732,772,1001,1111,1191,1221,1281,
%U A365374 1331,1371,1411,1721,1919,1999,2002,2112,2192,2222,2282,2332,2372,2412,2722,2828,2888
%N A365374 Numbers k such that squaring each digit and concatenating them forms a palindrome.
%C A365374 The sequence is infinite since if k is a term then so is 1k1.
%H A365374 Michael S. Branicky, <a href="/A365374/b365374.txt">Table of n, a(n) for n = 1..10000</a>
%e A365374 k(6) = 19 becomes 181 as 1^2 = 1 and 9^2 = 81;
%e A365374 k(7) = 22 becomes  44 as 2^2 = 4 and 2^2 =  4;
%e A365374 k(8) = 28 becomes 464 as 2^2 = 4 and 8^2 = 64; etc.
%t A365374 Select[Range[0,3000],PalindromeQ@FromDigits@Flatten[IntegerDigits/@(IntegerDigits@#^2)]&]
%o A365374 (Python)
%o A365374 def ok(n): return (s:="".join(str(int(d)**2) for d in str(n))) == s[::-1]
%o A365374 print([k for k in range(3000) if ok(k)]) # _Michael S. Branicky_, Oct 05 2023
%Y A365374 Cf. A258373, A366198.
%K A365374 base,nonn
%O A365374 1,3
%A A365374 _Eric Angelini_ and _Giorgos Kalogeropoulos_, Oct 05 2023