This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365375 #27 Jun 16 2025 23:49:01 %S A365375 100269,100479,101269,101479,102269,102669,102699,104479,104779, %T A365375 104799,200589,202589,205589,205889,205899,300789,303789,307789, %U A365375 307889,307899,1000269,1000479,1001269,1001479,1002269,1002349,1002359,1002369,1002379,1002469,1002479,1002489,1002569,1002579 %N A365375 Numbers being the smallest positive integer having its digits (Cf. A179239) from which two digits can be chosen, the difference being any value from 0 to 9. %C A365375 Anagrams of the terms are not included in the sequence. %C A365375 There are 320 such numbers up to 10^7, the largest being 5067899. %H A365375 David A. Corneth, <a href="/A365375/b365375.txt">Table of n, a(n) for n = 1..10000</a> %e A365375 a(1) = 100269 and we have: %e A365375 0 = 0 - 0 %e A365375 1 = 1 - 0 %e A365375 2 = 2 - 0 %e A365375 3 = 9 - 6 %e A365375 4 = 6 - 2 %e A365375 5 = 6 - 1 %e A365375 6 = 6 - 0 %e A365375 7 = 9 - 2 %e A365375 8 = 9 - 1 %e A365375 9 = 9 - 0 %e A365375 The integer 102069 being an anagram of 100269 is not in the sequence (though 102069 also produces the 10 digits). %t A365375 lst={};Do[If[Union@Flatten[Abs@*Differences/@Subsets[IntegerDigits@k,{2}]]==Range[0,9],If[FreeQ[lst,s=Sort@IntegerDigits@k],AppendTo[lst,s];Print@k]],{k,10^6}] %o A365375 (Python) %o A365375 from itertools import count, islice, combinations, combinations_with_replacement as mc %o A365375 def c(t): %o A365375 d = list(map(int, t)) %o A365375 return len(set(abs(d[i]-d[j]) for i, j in combinations(range(len(d)), 2))) == 10 %o A365375 def bgen(): %o A365375 D = "123456789" %o A365375 return ((D[i],)+r for d in count(1) for i in range(9) for r in mc("0"+D[i:], d-1)) %o A365375 def agen(): %o A365375 yield from (int("".join(t)) for t in filter(c, bgen())) %o A365375 print(list(islice(agen(), 34))) # _Michael S. Branicky_, Sep 11 2024 %Y A365375 Cf. A179239, A219248. %K A365375 base,nonn %O A365375 1,1 %A A365375 _Eric Angelini_ and _Giorgos Kalogeropoulos_, Sep 02 2023 %E A365375 Name specified by _David A. Corneth_, Sep 11 2024