cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365375 Numbers being the smallest positive integer having its digits (Cf. A179239) from which two digits can be chosen, the difference being any value from 0 to 9.

This page as a plain text file.
%I A365375 #27 Jun 16 2025 23:49:01
%S A365375 100269,100479,101269,101479,102269,102669,102699,104479,104779,
%T A365375 104799,200589,202589,205589,205889,205899,300789,303789,307789,
%U A365375 307889,307899,1000269,1000479,1001269,1001479,1002269,1002349,1002359,1002369,1002379,1002469,1002479,1002489,1002569,1002579
%N A365375 Numbers being the smallest positive integer having its digits (Cf. A179239) from which two digits can be chosen, the difference being any value from 0 to 9.
%C A365375 Anagrams of the terms are not included in the sequence.
%C A365375 There are 320 such numbers up to 10^7, the largest being 5067899.
%H A365375 David A. Corneth, <a href="/A365375/b365375.txt">Table of n, a(n) for n = 1..10000</a>
%e A365375 a(1) = 100269 and we have:
%e A365375   0 = 0 - 0
%e A365375   1 = 1 - 0
%e A365375   2 = 2 - 0
%e A365375   3 = 9 - 6
%e A365375   4 = 6 - 2
%e A365375   5 = 6 - 1
%e A365375   6 = 6 - 0
%e A365375   7 = 9 - 2
%e A365375   8 = 9 - 1
%e A365375   9 = 9 - 0
%e A365375 The integer 102069 being an anagram of 100269 is not in the sequence (though 102069 also produces the 10 digits).
%t A365375 lst={};Do[If[Union@Flatten[Abs@*Differences/@Subsets[IntegerDigits@k,{2}]]==Range[0,9],If[FreeQ[lst,s=Sort@IntegerDigits@k],AppendTo[lst,s];Print@k]],{k,10^6}]
%o A365375 (Python)
%o A365375 from itertools import count, islice, combinations, combinations_with_replacement as mc
%o A365375 def c(t):
%o A365375     d = list(map(int, t))
%o A365375     return len(set(abs(d[i]-d[j]) for i, j in combinations(range(len(d)), 2))) == 10
%o A365375 def bgen():
%o A365375     D = "123456789"
%o A365375     return ((D[i],)+r for d in count(1) for i in range(9) for r in mc("0"+D[i:], d-1))
%o A365375 def agen():
%o A365375     yield from (int("".join(t)) for t in filter(c, bgen()))
%o A365375 print(list(islice(agen(), 34))) # _Michael S. Branicky_, Sep 11 2024
%Y A365375 Cf. A179239, A219248.
%K A365375 base,nonn
%O A365375 1,1
%A A365375 _Eric Angelini_ and _Giorgos Kalogeropoulos_, Sep 02 2023
%E A365375 Name specified by _David A. Corneth_, Sep 11 2024