This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365376 #36 Dec 30 2023 17:01:01 %S A365376 1,1,2,5,10,23,47,102,207,440,890,1847,3730,7648,15400,31332,62922, %T A365376 127234,255374,514269,1030809,2071344,4148707,8321937,16660755, %U A365376 33384685,66812942,133789638,267685113,535784667,1071878216,2144762139,4290261840,8583175092,17168208940,34342860713 %N A365376 Number of subsets of {1..n} with a subset summing to n. %F A365376 a(n) = 2^n-A365377(n). - _Chai Wah Wu_, Sep 09 2023 %e A365376 The a(1) = 1 through a(4) = 10 sets: %e A365376 {1} {2} {3} {4} %e A365376 {1,2} {1,2} {1,3} %e A365376 {1,3} {1,4} %e A365376 {2,3} {2,4} %e A365376 {1,2,3} {3,4} %e A365376 {1,2,3} %e A365376 {1,2,4} %e A365376 {1,3,4} %e A365376 {2,3,4} %e A365376 {1,2,3,4} %t A365376 Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],n]&]],{n,0,10}] %o A365376 (PARI) isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(1))); %o A365376 a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ _Michel Marcus_, Sep 09 2023 %o A365376 (Python) %o A365376 from itertools import combinations, chain %o A365376 from sympy.utilities.iterables import partitions %o A365376 def A365376(n): %o A365376 if n == 0: return 1 %o A365376 nset = set(range(1,n+1)) %o A365376 s, c = [set(p) for p in partitions(n,m=n,k=n) if max(p.values(),default=1) == 1], 1 %o A365376 for a in chain.from_iterable(combinations(nset,m) for m in range(2,n+1)): %o A365376 if sum(a) >= n: %o A365376 aset = set(a) %o A365376 for p in s: %o A365376 if p.issubset(aset): %o A365376 c += 1 %o A365376 break %o A365376 return c # _Chai Wah Wu_, Sep 09 2023 %Y A365376 The case containing n is counted by A131577. %Y A365376 The version with re-usable parts is A365073. %Y A365376 The complement is counted by A365377. %Y A365376 The complement w/ re-usable parts is A365380. %Y A365376 Main diagonal of A365381. %Y A365376 A000009 counts sets summing to n, multisets A000041. %Y A365376 A000124 counts distinct possible sums of subsets of {1..n}. %Y A365376 A124506 appears to count combination-free subsets, differences of A326083. %Y A365376 A364350 counts combination-free strict partitions, complement A364839. %Y A365376 A365046 counts combination-full subsets, differences of A364914. %Y A365376 Cf. A007865, A085489, A088809, A093971, A103580, A151897, A236912, A237668, A326080, A364534. %K A365376 nonn %O A365376 0,3 %A A365376 _Gus Wiseman_, Sep 08 2023 %E A365376 a(16)-a(25) from _Michel Marcus_, Sep 09 2023 %E A365376 a(26)-a(32) from _Chai Wah Wu_, Sep 09 2023 %E A365376 a(33)-a(35) from _Chai Wah Wu_, Sep 10 2023