A365379 Number of integer partitions with sum <= n whose distinct parts can be linearly combined using nonnegative coefficients to obtain n.
0, 1, 3, 5, 10, 14, 27, 35, 61, 83, 128, 166, 264, 327, 482, 632, 882, 1110, 1565, 1938, 2663, 3339, 4401, 5471, 7290, 8921, 11555, 14291, 18280, 22303, 28507, 34507, 43534, 52882, 65798, 79621, 98932, 118629, 146072, 175562, 214708, 256351, 312583, 371779
Offset: 0
Keywords
Examples
The partition (4,2,2) cannot be linearly combined to obtain 9, so is not counted under a(9). On the other hand, the same partition (4,2,2) has distinct parts {2,4} and has 10 = 1*2 + 2*4, so is counted under a(10). The a(1) = 1 through a(5) = 14 partitions: (1) (1) (1) (1) (1) (2) (3) (2) (5) (11) (11) (4) (11) (21) (11) (21) (111) (21) (31) (22) (32) (31) (41) (111) (111) (211) (211) (1111) (221) (311) (1111) (2111) (11111)
Crossrefs
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Join@@Array[IntegerPartitions,n],combs[n,Union[#]]!={}&]],{n,0,10}]
-
Python
from sympy.utilities.iterables import partitions def A365379(n): a = {tuple(sorted(set(p))) for p in partitions(n)} return sum(1 for m in range(1,n+1) for b in partitions(m) if any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023
Extensions
a(21)-a(43) from Chai Wah Wu, Sep 13 2023