This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365380 #15 Dec 13 2024 09:42:12 %S A365380 1,1,2,2,6,4,16,12,32,32,104,48,256,208,448,448,1568,896,3840,2368, %T A365380 6912,7680,22912,10752,50688,44800,104448,88064,324096,165888,780288, %U A365380 541696,1458176,1519616,4044800,2220032,10838016,8744960,20250624,16433152,62267392,34865152 %N A365380 Number of subsets of {1..n} that cannot be linearly combined using nonnegative coefficients to obtain n. %H A365380 Andrew Howroyd, <a href="/A365380/b365380.txt">Table of n, a(n) for n = 1..100</a> %H A365380 Steven R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. %F A365380 a(n) = 2^n - A365073(n). %e A365380 The set {4,5,6} cannot be linearly combined to obtain 7 so is counted under a(7), but we have 8 = 2*4 + 0*5 + 0*6, so it is not counted under a(8). %e A365380 The a(1) = 1 through a(8) = 12 subsets: %e A365380 {} {} {} {} {} {} {} {} %e A365380 {2} {3} {2} {4} {2} {3} %e A365380 {3} {5} {3} {5} %e A365380 {4} {4,5} {4} {6} %e A365380 {2,4} {5} {7} %e A365380 {3,4} {6} {3,6} %e A365380 {2,4} {3,7} %e A365380 {2,6} {5,6} %e A365380 {3,5} {5,7} %e A365380 {3,6} {6,7} %e A365380 {4,5} {3,6,7} %e A365380 {4,6} {5,6,7} %e A365380 {5,6} %e A365380 {2,4,6} %e A365380 {3,5,6} %e A365380 {4,5,6} %t A365380 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365380 Table[Length[Select[Subsets[Range[n-1]],combs[n,#]=={}&]],{n,5}] %Y A365380 The complement is counted by A365073, without n A365542. %Y A365380 The binary complement is A365314, positive A365315. %Y A365380 The binary case is A365320, positive A365321. %Y A365380 For positive coefficients we have A365322, complement A088314. %Y A365380 A124506 appears to count combination-free subsets, differences of A326083. %Y A365380 A179822 counts sum-closed subsets, first differences of A326080. %Y A365380 A288728 counts binary sum-free subsets, first differences of A007865. %Y A365380 A365046 counts combination-full subsets, first differences of A364914. %Y A365380 A365071 counts sum-free subsets, first differences of A151897. %Y A365380 Cf. A050291, A085489, A088528, A088809, A093971, A326020, A364350, A364534, A365043, A365045. %K A365380 nonn %O A365380 1,3 %A A365380 _Gus Wiseman_, Sep 04 2023 %E A365380 Terms a(12) and beyond from _Andrew Howroyd_, Sep 04 2023