cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365381 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} with a subset summing to k.

This page as a plain text file.
%I A365381 #6 Sep 08 2023 22:53:05
%S A365381 1,2,1,4,2,2,1,8,4,4,5,2,2,1,16,8,8,10,10,7,5,5,2,2,1,32,16,16,20,20,
%T A365381 23,15,15,12,12,8,5,5,2,2,1,64,32,32,40,40,46,47,38,33,35,29,28,21,17,
%U A365381 14,13,8,5,5,2,2,1,128,64,64,80,80,92,94,102,79,82,76,75,68,64,53,48,43,34,33,23,19,15,13,8,5,5,2,2,1
%N A365381 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} with a subset summing to k.
%C A365381 Row lengths are A000124(n) = 1 + n*(n+1)/2.
%e A365381 Triangle begins:
%e A365381    1
%e A365381    2  1
%e A365381    4  2  2  1
%e A365381    8  4  4  5  2  2  1
%e A365381   16  8  8 10 10  7  5  5  2  2  1
%e A365381   32 16 16 20 20 23 15 15 12 12  8  5  5  2  2  1
%e A365381   64 32 32 40 40 46 47 38 33 35 29 28 21 17 14 13  8  5  5  2  2  1
%e A365381 Array begins:
%e A365381      k=0   k=1  k=2  k=3  k=4  k=5  k=6  k=7  k=8  k=9
%e A365381 -------------------------------------------------------
%e A365381 n=0:  1
%e A365381 n=1:  2     1
%e A365381 n=2:  4     2    2    1
%e A365381 n=3:  8     4    4    5    2    2    1
%e A365381 n=4:  16    8    8    10   10   7    5    5    2    2
%e A365381 n=5:  32    16   16   20   20   23   15   15   12   12
%e A365381 n=6:  64    32   32   40   40   46   47   38   33   35
%e A365381 n=7:  128   64   64   80   80   92   94   102  79   82
%e A365381 n=8:  256   128  128  160  160  184  188  204  207  184
%e A365381 n=9:  512   256  256  320  320  368  376  408  414  440
%e A365381 The T(5,8) = 12 subsets are:
%e A365381   {3,5}  {1,2,5}  {1,2,3,4}  {1,2,3,4,5}
%e A365381          {1,3,4}  {1,2,3,5}
%e A365381          {1,3,5}  {1,2,4,5}
%e A365381          {2,3,5}  {1,3,4,5}
%e A365381          {3,4,5}  {2,3,4,5}
%t A365381 Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],k]&]],{n,0,8},{k,0,n*(n+1)/2}]
%Y A365381 Row lengths are A000124 = number of distinct sums of subsets of {1..n}.
%Y A365381 Central column/main diagonal is A365376.
%Y A365381 A000009 counts sets summing to n.
%Y A365381 A000124 counts distinct possible sums of subsets of {1..n}.
%Y A365381 A365046 counts combination-full subsets, differences of A364914.
%Y A365381 Cf. A007865, A085489, A093971, A103580, A131577, A151897, A326080, A364272, A364534, A365073, A365377, A365380.
%K A365381 nonn,tabf
%O A365381 0,2
%A A365381 _Gus Wiseman_, Sep 08 2023