This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365382 #17 Sep 13 2023 14:16:53 %S A365382 0,0,0,0,0,0,0,0,0,0,0,2,0,4,4,2,4,12,8,20,11,14,26,43,19,38,53,51,48, %T A365382 101,48,124,96,121,159,134,103,241,261,244,175,401,229,488,358,328 %N A365382 Number of relatively prime integer partitions with sum < n that cannot be linearly combined using nonnegative coefficients to obtain n. %e A365382 The a(11) = 2 through a(18) = 8 partitions: %e A365382 (5,4) . (6,5) (6,5) (7,6) (7,5) (7,4) (7,5) %e A365382 (7,3) (7,4) (8,5) (9,4) (7,6) (7,6) (8,7) %e A365382 (7,5) (9,4) (9,5) (8,5) (10,7) %e A365382 (8,3) (10,3) (11,3) (8,7) (11,4) %e A365382 (9,5) (11,5) %e A365382 (9,7) (12,5) %e A365382 (10,3) (13,4) %e A365382 (11,4) (7,5,5) %e A365382 (11,5) %e A365382 (13,3) %e A365382 (7,4,4) %e A365382 (10,3,3) %t A365382 combsu[n_,y_]:=With[{s=Table[{k,i},{k,Union[y]},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365382 Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],GCD@@#==1&&combsu[n,#]=={}&]],{n,0,20}] %o A365382 (Python) %o A365382 from math import gcd %o A365382 from sympy.utilities.iterables import partitions %o A365382 def A365382(n): %o A365382 a = {tuple(sorted(set(p))) for p in partitions(n)} %o A365382 return sum(1 for m in range(1,n) for b in partitions(m) if gcd(*b.keys()) == 1 and not any(set(d).issubset(set(b)) for d in a)) # _Chai Wah Wu_, Sep 13 2023 %Y A365382 Relatively prime partitions are counted by A000837, ranks A289509. %Y A365382 This is the relatively prime case of A365378. %Y A365382 A000041 counts integer partitions, strict A000009. %Y A365382 A008284 counts partitions by length, strict A008289. %Y A365382 A116861 and A364916 count linear combinations of strict partitions. %Y A365382 A364350 counts combination-free strict partitions, non-strict A364915. %Y A365382 A364839 counts combination-full strict partitions, non-strict A364913. %Y A365382 Cf. A007359, A289508, A364345, A365073, A365312, A365379, A365380, A365383. %K A365382 nonn,more %O A365382 0,12 %A A365382 _Gus Wiseman_, Sep 08 2023 %E A365382 a(21)-a(45) from _Chai Wah Wu_, Sep 13 2023