A365383 Triangle read by rows where T(n,k) is the number of integer partitions of n that can be linearly combined with nonnegative coefficients to obtain k.
1, 2, 1, 3, 2, 2, 5, 3, 4, 3, 7, 5, 6, 6, 6, 11, 7, 9, 8, 9, 7, 15, 11, 13, 13, 14, 13, 14, 22, 15, 19, 17, 20, 17, 20, 16, 30, 22, 26, 26, 27, 26, 28, 26, 27, 42, 30, 37, 34, 39, 33, 40, 34, 39, 34, 56, 42, 50, 49, 52, 50, 54, 51, 54, 53, 53
Offset: 0
Examples
Triangle begins: 1 2 1 3 2 2 5 3 4 3 7 5 6 6 6 11 7 9 8 9 7 15 11 13 13 14 13 14 22 15 19 17 20 17 20 16 30 22 26 26 27 26 28 26 27 42 30 37 34 39 33 40 34 39 34 56 42 50 49 52 50 54 51 54 53 53 77 56 68 64 71 63 73 63 71 65 70 62 101 77 91 89 95 90 97 93 97 97 98 94 99 135 101 122 115 127 115 130 114 131 119 130 117 132 116 176 135 159 156 165 157 170 161 167 168 166 165 172 164 166 Row n = 6 counts the following partitions: (6) (51) (51) (51) (51) (51) (51) (411) (42) (411) (42) (411) (42) (321) (411) (33) (411) (321) (411) (3111) (321) (321) (321) (3111) (33) (2211) (3111) (3111) (3111) (2211) (321) (21111) (222) (2211) (222) (21111) (3111) (111111) (2211) (21111) (2211) (111111) (222) (21111) (111111) (21111) (2211) (111111) (111111) (21111) (111111)
Crossrefs
Programs
-
Mathematica
combu[n_,y_]:=With[{s=Table[{k,i},{k,Union[y]},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[IntegerPartitions[n],combu[k,#]!={}&]],{n,0,12},{k,0,n-1}]
Comments