This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365397 #23 Sep 09 2023 06:48:00 %S A365397 63,63,63,62,63,62,63,62,62,61,62,61,62,62,61,60,61,60,61,60,60,60,61, %T A365397 60,60,60,60,59,60,59,60,60,60,60,60,59,60,60,60,59,60,59,60,60,60,60, %U A365397 61,60,60,60,60,60,61,60,60,59,59,59,60,59,60,60,59,58,58 %N A365397 a(n) = 64 + A000720(n) - A365398(n). %C A365397 It is conjectured that A365339(n) - PrimePi(n) = 64 for all n >= 31957 (Pollack et al.). Does a similar relation apply if one replaces Euler's totient by the sum of divisors function in A365339? In particular, note remark (4.4) by Terence Tao in the linked paper. %C A365397 From _Chai Wah Wu_, Sep 08 2023: (Start) %C A365397 a(n) seems to be decreasing for n=10^i: %C A365397 a(1) = 63 %C A365397 a(10) = 61 %C A365397 a(100) = 58 %C A365397 a(1000) = 58 %C A365397 a(10^4) = 54 %C A365397 a(10^5) = 53 %C A365397 a(10^6) = 48 %C A365397 a(10^7) = 46 %C A365397 a(10^8) = 43 %C A365397 (End) %H A365397 Paul Pollack, Carl Pomerance, and Enrique Treviño, <a href="https://math.dartmouth.edu/~carlp/MonotonePhi.pdf">Sets of monotonicity for Euler's totient function</a>, preprint. See M(n). %H A365397 Paul Pollack, Carl Pomerance, and Enrique Treviño, <a href="https://doi.org/10.1007/s11139-012-9386-6">Sets of monotonicity for Euler's totient function</a>, Ramanujan J. 30 (2013), no. 3, pp. 379-398. %H A365397 Terence Tao, <a href="https://arxiv.org/abs/2309.02325">Monotone non-decreasing sequences of the Euler totient function</a>, arXiv:2309.02325 [math.NT], 2023. %F A365397 a(n)<=63. This is due to the fact that A000203(p) = p+1 for p prime, and therefore A365398(n) >= A000720(n)+1. - _Chai Wah Wu_, Sep 08 2023 %o A365397 (Python) %o A365397 from bisect import bisect %o A365397 from sympy import divisor_sigma, primepi %o A365397 def A365397(n): %o A365397 plist, qlist, c = tuple(divisor_sigma(i) for i in range(1,n+1)), [0]*(n+1), 0 %o A365397 for i in range(n): %o A365397 qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i %o A365397 c = max(c,a) %o A365397 return 64+primepi(n)-c # _Chai Wah Wu_, Sep 08 2023 %Y A365397 Cf. A000720, A000203, A365398, A365400. %K A365397 nonn %O A365397 1,1 %A A365397 _Peter Luschny_, Sep 08 2023