This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365399 #22 Sep 17 2023 21:22:02 %S A365399 1,2,3,4,4,5,5,6,6,7,7,8,8,8,9,10,10,11,11,12,12,12,12,13,13,13,13,14, %T A365399 14,15,15,15,15,15,16,17,17,17,18,19,19,20,20,20,20,20,20,21,21,21,21, %U A365399 22,22,23,23,24,24,24,24,25,25,25,25,26,26,27,27,27,27 %N A365399 Length of the longest subsequence of 1, ..., n on which the number of divisors function tau A000005 is nondecreasing. %C A365399 The sequence was inspired by A365339. %H A365399 Peter Luschny, <a href="/A365399/b365399.txt">Table of n, a(n) for n = 1..10000</a> %H A365399 Plot2, <a href="https://oeis.org/plot2a?name1=A365399&name2=A365339&tform1=untransformed&tform2=untransformed&shift=0&radiop1=ratio&drawlines=true">A365399 vs A365339</a>. %F A365399 a(n+1) - a(n) <= 1. %e A365399 The terms of the subsequences of A000005 are marked by '*'. They start: %e A365399 1*, 2, 2 , 3, 2, 4, 2, 4, ... -> a(1) = 1 %e A365399 1*, 2*, 2 , 3, 2, 4, 2, 4, ... -> a(2) = 2 %e A365399 1*, 2*, 2*, 3, 2, 4, 2, 4, ... -> a(3) = 3 %e A365399 1*, 2*, 2*, 3*, 2, 4, 2, 4, ... -> a(4) = 4 %e A365399 1*, 2*, 2*, 3*, 2, 4, 2, 4, ... -> a(5) = 4 %e A365399 1*, 2*, 2*, 3*, 2, 4*, 2, 4, ... -> a(6) = 5 %e A365399 1*, 2*, 2*, 3*, 2, 4*, 2, 4, ... -> a(7) = 5 %e A365399 1*, 2*, 2*, 3*, 2, 4*, 2, 4*, ... -> a(8) = 6 %e A365399 Example: a(2000000) = 450033. %o A365399 (Julia) %o A365399 # Computes the first N terms of the sequence using function tau from A000005. %o A365399 function LLS_list(seq, N) %o A365399 lst = zeros(Int64, N) %o A365399 dyn = zeros(Int64, N) %o A365399 for n in 1:N %o A365399 p = seq(n) %o A365399 nxt = dyn[p] + 1 %o A365399 while p <= N && dyn[p] < nxt %o A365399 dyn[p] = nxt %o A365399 p += 1 %o A365399 end %o A365399 lst[n] = dyn[n] %o A365399 end %o A365399 return lst %o A365399 end %o A365399 A365399List(N) = LLS_list(tau, N) %o A365399 println(A365399List(69)) %o A365399 (Python) %o A365399 from bisect import bisect %o A365399 from sympy import divisor_count %o A365399 def A365399(n): %o A365399 plist, qlist, c = tuple(divisor_count(i) for i in range(1,n+1)), [0]*(n+1), 0 %o A365399 for i in range(n): %o A365399 qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i %o A365399 c = max(c,a) %o A365399 return c # _Chai Wah Wu_, Sep 04 2023 %Y A365399 Cf. A000005, A365339, A365398. %K A365399 nonn %O A365399 1,2 %A A365399 _Peter Luschny_, Sep 03 2023